Lifting,n-dimensional spectral resolutions, andn-dimensional observables
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603663" target="_blank" >RIV/61989592:15310/20:73603663 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00012-020-00664-8" target="_blank" >https://link.springer.com/article/10.1007%2Fs00012-020-00664-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-020-00664-8" target="_blank" >10.1007/s00012-020-00664-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lifting,n-dimensional spectral resolutions, andn-dimensional observables
Popis výsledku v původním jazyce
We show that under some natural conditions, we are able to lift an n-dimensional spectral resolution from one monotone sigma-complete unital po-group into another one, when the first one is a sigma-homomorphic image of the second one. We note that an n-dimensional spectral resolution is a mapping from R-n into a quantum structure which is monotone, left-continuous with non-negative increments and which is going to 0 if one variable goes to -infinity and it goes to 1 if all variables go to +infinity. Applying this result to some important classes of effect algebras including also MV-algebras, we show that there is a one-to-one correspondence between n-dimensional spectral resolutions and n-dimensional observables on these effect algebras which are a kind of sigma-homomorphisms from the Borel sigma-algebra of R-n into the quantum structure. An important used tool are two forms of the Loomis-Sikorski theorem which use two kinds of tribes of fuzzy sets. In addition, we show that we can define three different kinds of n-dimensional joint observables of n one-dimensional observables.
Název v anglickém jazyce
Lifting,n-dimensional spectral resolutions, andn-dimensional observables
Popis výsledku anglicky
We show that under some natural conditions, we are able to lift an n-dimensional spectral resolution from one monotone sigma-complete unital po-group into another one, when the first one is a sigma-homomorphic image of the second one. We note that an n-dimensional spectral resolution is a mapping from R-n into a quantum structure which is monotone, left-continuous with non-negative increments and which is going to 0 if one variable goes to -infinity and it goes to 1 if all variables go to +infinity. Applying this result to some important classes of effect algebras including also MV-algebras, we show that there is a one-to-one correspondence between n-dimensional spectral resolutions and n-dimensional observables on these effect algebras which are a kind of sigma-homomorphisms from the Borel sigma-algebra of R-n into the quantum structure. An important used tool are two forms of the Loomis-Sikorski theorem which use two kinds of tribes of fuzzy sets. In addition, we show that we can define three different kinds of n-dimensional joint observables of n one-dimensional observables.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ALGEBRA UNIVERSALIS
ISSN
0002-5240
e-ISSN
—
Svazek periodika
81
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
36
Strana od-do
34
Kód UT WoS článku
000540174600001
EID výsledku v databázi Scopus
2-s2.0-85086357532