States on wEMV-algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603666" target="_blank" >RIV/61989592:15310/20:73603666 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs40574-020-00233-w" target="_blank" >https://link.springer.com/article/10.1007%2Fs40574-020-00233-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40574-020-00233-w" target="_blank" >10.1007/s40574-020-00233-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
States on wEMV-algebras
Popis výsledku v původním jazyce
Recently in Dvurecenskij and Zahiri (A variety containing EMV-algebras and Pierce sheaves,), new algebras called wEMV-algebras, which generalize MV-algebras, generalized Boolean algebras and EMV-algebras, were founded, and for these algebras a top element is not assumed a priori. For this class we define a state as a mapping from a wEMV-algebra into the real interval [0, 1] which preserves a kind of subtraction of two comparable elements and attaining the value 1 in some element. It can happen that some wEMV-algebras are stateless, e.g. cancellative ones. We characterize extremal states just as state-morphisms which are wEMV-homomorphisms from an algebra into the real interval [0, 1]. We show that there is a one-to-one correspondence between the set of state-morphisms and the set of maximal ideals having a special property. Moreover, we prove that under some conditions every state on a wEMV-algebra is a weak limit of a net of convex combinations of state-morphisms.
Název v anglickém jazyce
States on wEMV-algebras
Popis výsledku anglicky
Recently in Dvurecenskij and Zahiri (A variety containing EMV-algebras and Pierce sheaves,), new algebras called wEMV-algebras, which generalize MV-algebras, generalized Boolean algebras and EMV-algebras, were founded, and for these algebras a top element is not assumed a priori. For this class we define a state as a mapping from a wEMV-algebra into the real interval [0, 1] which preserves a kind of subtraction of two comparable elements and attaining the value 1 in some element. It can happen that some wEMV-algebras are stateless, e.g. cancellative ones. We characterize extremal states just as state-morphisms which are wEMV-homomorphisms from an algebra into the real interval [0, 1]. We show that there is a one-to-one correspondence between the set of state-morphisms and the set of maximal ideals having a special property. Moreover, we prove that under some conditions every state on a wEMV-algebra is a weak limit of a net of convex combinations of state-morphisms.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA
ISSN
1972-6724
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
515-527
Kód UT WoS článku
000543579000001
EID výsledku v databázi Scopus
2-s2.0-85086591197