Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The state-of-art of the generalizations of the Choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603691" target="_blank" >RIV/61989592:15310/20:73603691 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1566253519304385" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1566253519304385</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.inffus.2019.10.005" target="_blank" >10.1016/j.inffus.2019.10.005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The state-of-art of the generalizations of the Choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functions

  • Popis výsledku v původním jazyce

    In 2013, Barrenechea et al. used the Choquet integral as an aggregation function in the fuzzy reasoning method (FRM) of fuzzy rule-based classification systems. After that, starting from 2016, new aggregation-like functions generalizing the Choquet integral have appeared in the literature, in particular in the works by Lucca et al. Those generalizations of the Choquet integral, namely C-T-integrals (by t-norm T), C-F-integrals(by a fusion function F satisfying some specific properties), CC-integrals (by a copula C), C-F1F2-integrals (by a pair of fusion functions (F-1, F-2) under some specific constraints) and their generalization gC(F)(1F2)-integrals, achieved excellent results in classification problems. The works by Lucca et al. showed that the aggregation task in a FRM may be performed by either aggregation, pre-aggregation or just ordered directional monotonic functions satisfying some boundary conditions, that is, it is not necessary to have an aggregation function to obtain competitive results in classification. The aim of this paper is to present and discuss such generalizations of the Choquet integral, offering a general panorama of the state of the art, showing the relations and intersections among such five classes of generalizations. First, we present them from a theoretical point of view. Then, we also summarize some applications found in the literature.

  • Název v anglickém jazyce

    The state-of-art of the generalizations of the Choquet integral: From aggregation and pre-aggregation to ordered directionally monotone functions

  • Popis výsledku anglicky

    In 2013, Barrenechea et al. used the Choquet integral as an aggregation function in the fuzzy reasoning method (FRM) of fuzzy rule-based classification systems. After that, starting from 2016, new aggregation-like functions generalizing the Choquet integral have appeared in the literature, in particular in the works by Lucca et al. Those generalizations of the Choquet integral, namely C-T-integrals (by t-norm T), C-F-integrals(by a fusion function F satisfying some specific properties), CC-integrals (by a copula C), C-F1F2-integrals (by a pair of fusion functions (F-1, F-2) under some specific constraints) and their generalization gC(F)(1F2)-integrals, achieved excellent results in classification problems. The works by Lucca et al. showed that the aggregation task in a FRM may be performed by either aggregation, pre-aggregation or just ordered directional monotonic functions satisfying some boundary conditions, that is, it is not necessary to have an aggregation function to obtain competitive results in classification. The aim of this paper is to present and discuss such generalizations of the Choquet integral, offering a general panorama of the state of the art, showing the relations and intersections among such five classes of generalizations. First, we present them from a theoretical point of view. Then, we also summarize some applications found in the literature.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-06915S" target="_blank" >GA18-06915S: Nové přístupy k agregačním operátorům v analýze a zpracování dat</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information Fusion

  • ISSN

    1566-2535

  • e-ISSN

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    MAY

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

    27-43

  • Kód UT WoS článku

    000509755200003

  • EID výsledku v databázi Scopus

    2-s2.0-85075309330