Hot electron and thermal effects in plasmonic photocatalysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603893" target="_blank" >RIV/61989592:15310/20:73603893 - isvavai.cz</a>
Výsledek na webu
<a href="https://aip.scitation.org/doi/full/10.1063/5.0013945" target="_blank" >https://aip.scitation.org/doi/full/10.1063/5.0013945</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0013945" target="_blank" >10.1063/5.0013945</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hot electron and thermal effects in plasmonic photocatalysis
Popis výsledku v původním jazyce
Surface plasmons have shown increasingly widespread applications in the last decade, especially in the field of solar energy conversion, recently leading to the use of metal nanoparticles as plasmonic photocatalysts. The latter offers great potential in overcoming traditional catalysts by providing localized heating and unconventional reaction pathways leading to improved product selectivity. A complete understanding of the underlying mechanisms remains, however, elusive due to the close resemblance between thermal and non-thermal effects, both leading to enhanced reaction rates. In this tutorial, we will introduce the basic physics of surface plasmons and the interaction mechanisms with surrounding molecules. We will then discuss the main strategies to evaluate photothermal effects and the main signatures of hot electron-driven processes. These aspects will be covered in specific examples of plasmonic photocatalysis for energy-relevant chemical reactions in the case of colloidal suspensions and at the solid/gas interphase in solid pellets, which involve different thermal constraints and thus different experimental strategies to reveal the effects of localized heating and hot electrons.
Název v anglickém jazyce
Hot electron and thermal effects in plasmonic photocatalysis
Popis výsledku anglicky
Surface plasmons have shown increasingly widespread applications in the last decade, especially in the field of solar energy conversion, recently leading to the use of metal nanoparticles as plasmonic photocatalysts. The latter offers great potential in overcoming traditional catalysts by providing localized heating and unconventional reaction pathways leading to improved product selectivity. A complete understanding of the underlying mechanisms remains, however, elusive due to the close resemblance between thermal and non-thermal effects, both leading to enhanced reaction rates. In this tutorial, we will introduce the basic physics of surface plasmons and the interaction mechanisms with surrounding molecules. We will then discuss the main strategies to evaluate photothermal effects and the main signatures of hot electron-driven processes. These aspects will be covered in specific examples of plasmonic photocatalysis for energy-relevant chemical reactions in the case of colloidal suspensions and at the solid/gas interphase in solid pellets, which involve different thermal constraints and thus different experimental strategies to reveal the effects of localized heating and hot electrons.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF APPLIED PHYSICS
ISSN
0021-8979
e-ISSN
—
Svazek periodika
128
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
"041101-1"-"041101-23"
Kód UT WoS článku
000555431200001
EID výsledku v databázi Scopus
2-s2.0-85092570458