Signal enhancement in desorption nanoelectrospray ionization by custom-made inlet with pressure regulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73604001" target="_blank" >RIV/61989592:15310/20:73604001 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/jms.4642" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/jms.4642</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jms.4642" target="_blank" >10.1002/jms.4642</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Signal enhancement in desorption nanoelectrospray ionization by custom-made inlet with pressure regulation
Popis výsledku v původním jazyce
The efficiency of desorption/ionization becomes more critical as the sampled surface area decreases. Desorption electrospray and desorption nanoelectrospray belong to ambient ionizations and enable direct surface analysis including mass spectrometric imaging. Lateral resolution in tens of micrometers was demonstrated for desorption nanoelectrospray previously, but sensitivity of the surface scan can be an issue. For desorption electrospray, the drag force in the source is driven by the flow of used gases and vacuum suction. Ion signal intensity can be improved by controlling the nebulizing gas flow rate or auxiliary pumping of a closed compartment in front of the mass spectrometer inlet. Because nanoelectrospray generates charged droplets without the assistance of a nebulizing gas, only vacuum suction drives the gas flow. In this study, the effect of pressure drop between the atmospheric and evacuated region of a mass spectrometer on the ion signal intensity was investigated for desorption nanoelectrospray. A modification of the commercial inlet was designed. An auxiliary pump was directly connected to an inner compartment of the modified mass spectrometer inlet through a needle valve that enabled the regulation of the reduced pressure. Adjustment of the pressure drop significantly increased signal intensity (more than one order of magnitude in some cases). To a lesser extent, the temperature of a heated capillary (an integral part of the inlet) also influenced the signal intensity. The applicability of desorption nanoelectrospray equipped with pressure regulation was demonstrated by the analysis of synthetic cathinones or a pill of paracetamol. Because pressure in the inlet depends on the diameters of orifices and the power of vacuum systems of mass spectrometers, the effect of the pressure regulation can be different for different instruments. Nevertheless, the presented results confirmed the importance of pressure drop-driven transport for desorption nanoelectrospray efficiency and can encourage its new applications.
Název v anglickém jazyce
Signal enhancement in desorption nanoelectrospray ionization by custom-made inlet with pressure regulation
Popis výsledku anglicky
The efficiency of desorption/ionization becomes more critical as the sampled surface area decreases. Desorption electrospray and desorption nanoelectrospray belong to ambient ionizations and enable direct surface analysis including mass spectrometric imaging. Lateral resolution in tens of micrometers was demonstrated for desorption nanoelectrospray previously, but sensitivity of the surface scan can be an issue. For desorption electrospray, the drag force in the source is driven by the flow of used gases and vacuum suction. Ion signal intensity can be improved by controlling the nebulizing gas flow rate or auxiliary pumping of a closed compartment in front of the mass spectrometer inlet. Because nanoelectrospray generates charged droplets without the assistance of a nebulizing gas, only vacuum suction drives the gas flow. In this study, the effect of pressure drop between the atmospheric and evacuated region of a mass spectrometer on the ion signal intensity was investigated for desorption nanoelectrospray. A modification of the commercial inlet was designed. An auxiliary pump was directly connected to an inner compartment of the modified mass spectrometer inlet through a needle valve that enabled the regulation of the reduced pressure. Adjustment of the pressure drop significantly increased signal intensity (more than one order of magnitude in some cases). To a lesser extent, the temperature of a heated capillary (an integral part of the inlet) also influenced the signal intensity. The applicability of desorption nanoelectrospray equipped with pressure regulation was demonstrated by the analysis of synthetic cathinones or a pill of paracetamol. Because pressure in the inlet depends on the diameters of orifices and the power of vacuum systems of mass spectrometers, the effect of the pressure regulation can be different for different instruments. Nevertheless, the presented results confirmed the importance of pressure drop-driven transport for desorption nanoelectrospray efficiency and can encourage its new applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000754" target="_blank" >EF16_019/0000754: Nanotechnologie pro budoucnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF MASS SPECTROMETRY
ISSN
1076-5174
e-ISSN
—
Svazek periodika
55
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
"e4642-1"-"e4642-7"
Kód UT WoS článku
000577099400001
EID výsledku v databázi Scopus
2-s2.0-85090820782