Quantifying the Sensitivity of NDVI-Based C Factor Estimation and Potential Soil Erosion Prediction using Spaceborne Earth Observation Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73605277" target="_blank" >RIV/61989592:15310/20:73605277 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/12/7/1136/htm" target="_blank" >https://www.mdpi.com/2072-4292/12/7/1136/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs12071136" target="_blank" >10.3390/rs12071136</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantifying the Sensitivity of NDVI-Based C Factor Estimation and Potential Soil Erosion Prediction using Spaceborne Earth Observation Data
Popis výsledku v původním jazyce
The Normalized Difference Vegetation Index (NDVI), has been increasingly used to capture spatiotemporal variations in cover factor (C) determination for erosion prediction on a larger landscape scale. However, NDVI-based C factor (C-ndvi) estimation per se is sensitive to various biophysical variables, such as soil condition, topographic features, and vegetation phenology. As a result, C-ndvi often results in incorrect values that affect the quality of soil erosion prediction. The aim of this study is to multi-temporally estimate C-ndvi values and compare the values with those of literature values (C-lit) in order to quantify discrepancies between C values obtained via NDVI and empirical-based methods. A further aim is to quantify the effect of biophysical variables such as slope shape, erodibility, and crop growth stage variation on C-ndvi and soil erosion prediction on an agricultural landscape scale. Multi-temporal Landsat 7, Landsat 8, and Sentinel 2 data, from 2013 to 2016, were used in combination with high resolution agricultural land use data of the Integrated Administrative and Control System, from the Uckermark district of north-eastern Germany. Correlations between C-ndvi and C-lit improved in data from spring and summer seasons (up to r = 0.93); nonetheless, the C-ndvi values were generally higher compared with C-lit values. Consequently, modelling erosion using C-ndvi resulted in two times higher rates than modelling with C-lit. The C-ndvi values were found to be sensitive to soil erodibility condition and slope shape of the landscape. Higher erodibility condition was associated with higher C-ndvi values. Spring and summer taken images showed significant sensitivity to heterogeneous soil condition. The C-ndvi estimation also showed varying sensitivity to slope shape variation; values on convex-shaped slopes were higher compared with flat slopes. Quantifying the sensitivity of C-ndvi values to biophysical variables may help improve capturing spatiotemporal variability of C factor values in similar landscapes and conditions.
Název v anglickém jazyce
Quantifying the Sensitivity of NDVI-Based C Factor Estimation and Potential Soil Erosion Prediction using Spaceborne Earth Observation Data
Popis výsledku anglicky
The Normalized Difference Vegetation Index (NDVI), has been increasingly used to capture spatiotemporal variations in cover factor (C) determination for erosion prediction on a larger landscape scale. However, NDVI-based C factor (C-ndvi) estimation per se is sensitive to various biophysical variables, such as soil condition, topographic features, and vegetation phenology. As a result, C-ndvi often results in incorrect values that affect the quality of soil erosion prediction. The aim of this study is to multi-temporally estimate C-ndvi values and compare the values with those of literature values (C-lit) in order to quantify discrepancies between C values obtained via NDVI and empirical-based methods. A further aim is to quantify the effect of biophysical variables such as slope shape, erodibility, and crop growth stage variation on C-ndvi and soil erosion prediction on an agricultural landscape scale. Multi-temporal Landsat 7, Landsat 8, and Sentinel 2 data, from 2013 to 2016, were used in combination with high resolution agricultural land use data of the Integrated Administrative and Control System, from the Uckermark district of north-eastern Germany. Correlations between C-ndvi and C-lit improved in data from spring and summer seasons (up to r = 0.93); nonetheless, the C-ndvi values were generally higher compared with C-lit values. Consequently, modelling erosion using C-ndvi resulted in two times higher rates than modelling with C-lit. The C-ndvi values were found to be sensitive to soil erodibility condition and slope shape of the landscape. Higher erodibility condition was associated with higher C-ndvi values. Spring and summer taken images showed significant sensitivity to heterogeneous soil condition. The C-ndvi estimation also showed varying sensitivity to slope shape variation; values on convex-shaped slopes were higher compared with flat slopes. Quantifying the sensitivity of C-ndvi values to biophysical variables may help improve capturing spatiotemporal variability of C factor values in similar landscapes and conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
<a href="/cs/project/QK1810233" target="_blank" >QK1810233: Kvantifikace dopadu hospodaření na erozi, kvalitu půd a výnosy pěstovaných plodin s návrhem pěstebních technologií šetrných k životnímu prostředí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
"1136-1"-"1136-25"
Kód UT WoS článku
000537709600086
EID výsledku v databázi Scopus
2-s2.0-85084262972