Highly accurate Gaussian process tomography with geometrical sets of coherent states
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73607276" target="_blank" >RIV/61989592:15310/21:73607276 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1367-2630/abf702" target="_blank" >https://iopscience.iop.org/article/10.1088/1367-2630/abf702</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1367-2630/abf702" target="_blank" >10.1088/1367-2630/abf702</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Highly accurate Gaussian process tomography with geometrical sets of coherent states
Popis výsledku v původním jazyce
We propose a practical strategy for choosing sets of input coherent states that are near-optimal for reconstructing single-mode Gaussian quantum processes with output-state heterodyne measurements. We first derive analytical expressions for the mean squared-error that quantifies the reconstruction accuracy for general process tomography and large data. Using such expressions, upon relaxing the trace-preserving (TP) constraint, we introduce an error-reducing set of input coherent states that is independent of the measurement data or the unknown true process-the geometrical set. We numerically show that process reconstruction from such input coherent states is nearly as accurate as that from the best possible set of coherent states chosen with the complete knowledge about the process. This allows us to efficiently characterize Gaussian processes even with reasonably low-energy coherent states. We numerically observe that the geometrical strategy without trace preservation beats all nonadaptive strategies for arbitrary TP Gaussian processes of typical parameter ranges so long as the displacement components are not too large.
Název v anglickém jazyce
Highly accurate Gaussian process tomography with geometrical sets of coherent states
Popis výsledku anglicky
We propose a practical strategy for choosing sets of input coherent states that are near-optimal for reconstructing single-mode Gaussian quantum processes with output-state heterodyne measurements. We first derive analytical expressions for the mean squared-error that quantifies the reconstruction accuracy for general process tomography and large data. Using such expressions, upon relaxing the trace-preserving (TP) constraint, we introduce an error-reducing set of input coherent states that is independent of the measurement data or the unknown true process-the geometrical set. We numerically show that process reconstruction from such input coherent states is nearly as accurate as that from the best possible set of coherent states chosen with the complete knowledge about the process. This allows us to efficiently characterize Gaussian processes even with reasonably low-energy coherent states. We numerically observe that the geometrical strategy without trace preservation beats all nonadaptive strategies for arbitrary TP Gaussian processes of typical parameter ranges so long as the displacement components are not too large.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
New Journal of Physics
ISSN
1367-2630
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
"063024-1"-"063024-16"
Kód UT WoS článku
000659670600001
EID výsledku v databázi Scopus
2-s2.0-85108027658