Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Imperfect 1-Out-of-2 Quantum Oblivious Transfer: Bounds, a Protocol, and its Experimental Implementation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73607440" target="_blank" >RIV/61989592:15310/21:73607440 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.010335" target="_blank" >https://journals.aps.org/prxquantum/pdf/10.1103/PRXQuantum.2.010335</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PRXQuantum.2.010335" target="_blank" >10.1103/PRXQuantum.2.010335</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Imperfect 1-Out-of-2 Quantum Oblivious Transfer: Bounds, a Protocol, and its Experimental Implementation

  • Popis výsledku v původním jazyce

    Oblivious transfer is an important primitive in modern cryptography. Applications include secure multiparty computation, oblivious sampling, e-voting, and signatures. Information-theoretically secure perfect 1-out-of 2 oblivious transfer is impossible to achieve. Imperfect variants, where both participants&apos; ability to cheat is still limited, are possible using quantum means while remaining classically impossible. Precisely what security parameters are attainable remains unknown. We introduce a theoretical framework for studying semirandom quantum oblivious transfer, which is shown to be equivalent to regular oblivious transfer in terms of cheating probabilities. We then use it to derive bounds on cheating. We also present a protocol with lower cheating probabilities than previous schemes, together with its optical realization. We show that a lower bound of 2/3 on the minimum achievable cheating probability can be directly derived for semirandom protocols using a different method and definition of cheating than used previously. The lower bound increases from 2/3 to approximately 0.749 if the states output by the protocol are pure and symmetric. The oblivious transfer scheme we present uses unambiguous state elimination measurements and can be implemented with the same technological requirements as standard quantum cryptography. In particular, it does not require honest participants to prepare or measure entangled states. The cheating probabilities are 3/4 and approximately 0.729 for sender and receiver, respectively, which is lower than in existing protocols. Using a photonic testbed, we have implemented the protocol with honest parties, as well as optimal cheating strategies. Because of the asymmetry of the receiver&apos;s and sender&apos;s cheating probabilities, the protocol can be combined with a &quot;trivial&quot; protocol to achieve an overall protocol with lower average cheating probabilities of approximately 0.74 for both sender and receiver. This demonstrates that, interestingly, protocols where the final output states are pure and symmetric are not optimal in terms of average cheating probability.

  • Název v anglickém jazyce

    Imperfect 1-Out-of-2 Quantum Oblivious Transfer: Bounds, a Protocol, and its Experimental Implementation

  • Popis výsledku anglicky

    Oblivious transfer is an important primitive in modern cryptography. Applications include secure multiparty computation, oblivious sampling, e-voting, and signatures. Information-theoretically secure perfect 1-out-of 2 oblivious transfer is impossible to achieve. Imperfect variants, where both participants&apos; ability to cheat is still limited, are possible using quantum means while remaining classically impossible. Precisely what security parameters are attainable remains unknown. We introduce a theoretical framework for studying semirandom quantum oblivious transfer, which is shown to be equivalent to regular oblivious transfer in terms of cheating probabilities. We then use it to derive bounds on cheating. We also present a protocol with lower cheating probabilities than previous schemes, together with its optical realization. We show that a lower bound of 2/3 on the minimum achievable cheating probability can be directly derived for semirandom protocols using a different method and definition of cheating than used previously. The lower bound increases from 2/3 to approximately 0.749 if the states output by the protocol are pure and symmetric. The oblivious transfer scheme we present uses unambiguous state elimination measurements and can be implemented with the same technological requirements as standard quantum cryptography. In particular, it does not require honest participants to prepare or measure entangled states. The cheating probabilities are 3/4 and approximately 0.729 for sender and receiver, respectively, which is lower than in existing protocols. Using a photonic testbed, we have implemented the protocol with honest parties, as well as optimal cheating strategies. Because of the asymmetry of the receiver&apos;s and sender&apos;s cheating probabilities, the protocol can be combined with a &quot;trivial&quot; protocol to achieve an overall protocol with lower average cheating probabilities of approximately 0.74 for both sender and receiver. This demonstrates that, interestingly, protocols where the final output states are pure and symmetric are not optimal in terms of average cheating probability.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PRX Quantum

  • ISSN

    2691-3399

  • e-ISSN

  • Svazek periodika

    2

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    "010335-1"-"010335-21"

  • Kód UT WoS článku

    000674691500002

  • EID výsledku v databázi Scopus