alpha-Synuclein conformations followed by vibrational optical activity. Simulation and understanding of the spectra
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73607479" target="_blank" >RIV/61989592:15310/21:73607479 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2021/CP/D1CP02574K" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/CP/D1CP02574K</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d1cp02574k" target="_blank" >10.1039/d1cp02574k</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
alpha-Synuclein conformations followed by vibrational optical activity. Simulation and understanding of the spectra
Popis výsledku v původním jazyce
alpha-Synuclein is a neuronal protein which adopts multiple conformations. These can be conveniently studied by the spectroscopy of vibrational optical activity (VOA). However, the interpretation of VOA spectra based on quantum-chemical simulations is difficult. To overcome the hampering of the computations by the protein size, we used the Cartesian tensor transfer technique to investigate links between the spectral shapes and protein structure. Vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra of alpha-synuclein in disordered, alpha-helical and beta-sheet (fibril) forms were measured and analyzed on the basis of molecular dynamics and density functional theory computations. For the disordered and alpha-helical conformers, a high fidelity of the simulated spectra with a reasonable computational cost was achieved. Most experimental spectral features could be assigned to the structure. So far unreported ROA marker bands of the secondary structure were found for the lower-frequency and CH stretching vibrations. Fibril VCD spectra were simulated with a rigid periodic model of the geometry and the results are consistent with previous studies based on cryogenic electron microscopy. The fibrils also give a specific ROA signal, but unlike VCD it is currently not fully explicable by the simulations. In connection with the computational modeling the VOA spectroscopy thus appears as an extremely useful tool for monitoring alpha-synuclein and other proteins in solutions.
Název v anglickém jazyce
alpha-Synuclein conformations followed by vibrational optical activity. Simulation and understanding of the spectra
Popis výsledku anglicky
alpha-Synuclein is a neuronal protein which adopts multiple conformations. These can be conveniently studied by the spectroscopy of vibrational optical activity (VOA). However, the interpretation of VOA spectra based on quantum-chemical simulations is difficult. To overcome the hampering of the computations by the protein size, we used the Cartesian tensor transfer technique to investigate links between the spectral shapes and protein structure. Vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra of alpha-synuclein in disordered, alpha-helical and beta-sheet (fibril) forms were measured and analyzed on the basis of molecular dynamics and density functional theory computations. For the disordered and alpha-helical conformers, a high fidelity of the simulated spectra with a reasonable computational cost was achieved. Most experimental spectral features could be assigned to the structure. So far unreported ROA marker bands of the secondary structure were found for the lower-frequency and CH stretching vibrations. Fibril VCD spectra were simulated with a rigid periodic model of the geometry and the results are consistent with previous studies based on cryogenic electron microscopy. The fibrils also give a specific ROA signal, but unlike VCD it is currently not fully explicable by the simulations. In connection with the computational modeling the VOA spectroscopy thus appears as an extremely useful tool for monitoring alpha-synuclein and other proteins in solutions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
31
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
16635-16645
Kód UT WoS článku
000678727500001
EID výsledku v databázi Scopus
2-s2.0-85112716259