Frequency-multiplexed entanglement for continuous-variable quantum key distribution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73608654" target="_blank" >RIV/61989592:15310/21:73608654 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.osapublishing.org/prj/fulltext.cfm?uri=prj-9-12-2351&id=464822" target="_blank" >https://www.osapublishing.org/prj/fulltext.cfm?uri=prj-9-12-2351&id=464822</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1364/PRJ.434979" target="_blank" >10.1364/PRJ.434979</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Frequency-multiplexed entanglement for continuous-variable quantum key distribution
Popis výsledku v původním jazyce
Quantum key distribution with continuous variables already uses advantageous high-speed single-mode homodyne detection with low electronic noise at room temperature. Together with continuous-variable information encoding to nonclassical states, the distance for secure key transmission through lossy channels can approach 300 km in current optical fibers. Such protocols tolerate higher channel noise and also limited data processing efficiency compared to coherent-state protocols. The secret key rate can be further increased by increasing the system clock rates, and, further, by a suitable frequency-mode-multiplexing of optical transmission channels. However, the multiplexed modes couple together in the source or any other part of the protocol. Therefore, multiplexed communication will experience cross talk and the gain can be minuscule. Advantageously, homodyne detectors allow solving this cross-talk problem by proper data processing. It is a potential advantage over protocols with single-photon detectors, which do not enable similar data processing techniques. We demonstrate the positive outcome of this methodology on the experimentally characterized frequency-multiplexed entangled source of femtosecond optical pulses with natural cross talk between eight entangled pairs of modes. As the main result, we predict the almost 15-fold higher secret key rate. This experimental test and analysis of frequency-multiplexed entanglement source open the way for the field implementation of high-capacity quantum key distribution with continuous variables.
Název v anglickém jazyce
Frequency-multiplexed entanglement for continuous-variable quantum key distribution
Popis výsledku anglicky
Quantum key distribution with continuous variables already uses advantageous high-speed single-mode homodyne detection with low electronic noise at room temperature. Together with continuous-variable information encoding to nonclassical states, the distance for secure key transmission through lossy channels can approach 300 km in current optical fibers. Such protocols tolerate higher channel noise and also limited data processing efficiency compared to coherent-state protocols. The secret key rate can be further increased by increasing the system clock rates, and, further, by a suitable frequency-mode-multiplexing of optical transmission channels. However, the multiplexed modes couple together in the source or any other part of the protocol. Therefore, multiplexed communication will experience cross talk and the gain can be minuscule. Advantageously, homodyne detectors allow solving this cross-talk problem by proper data processing. It is a potential advantage over protocols with single-photon detectors, which do not enable similar data processing techniques. We demonstrate the positive outcome of this methodology on the experimentally characterized frequency-multiplexed entangled source of femtosecond optical pulses with natural cross talk between eight entangled pairs of modes. As the main result, we predict the almost 15-fold higher secret key rate. This experimental test and analysis of frequency-multiplexed entanglement source open the way for the field implementation of high-capacity quantum key distribution with continuous variables.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Photonics Research
ISSN
2327-9125
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
9
Strana od-do
2351-2359
Kód UT WoS článku
000724596800006
EID výsledku v databázi Scopus
2-s2.0-85120350231