Varieties corresponding to classes of complemented posets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609261" target="_blank" >RIV/61989592:15310/21:73609261 - isvavai.cz</a>
Výsledek na webu
<a href="http://mat76.mat.uni-miskolc.hu/mnotes/article/3218" target="_blank" >http://mat76.mat.uni-miskolc.hu/mnotes/article/3218</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18514/MMN.2021.3218" target="_blank" >10.18514/MMN.2021.3218</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Varieties corresponding to classes of complemented posets
Popis výsledku v původním jazyce
As algebraic semantics of the logic of quantum mechanics there are usually used orthomodular posets, i.e. bounded posets with a complementation which is an antitone involution and where the join of orthogonal elements exists and the orthomodular law is satisfied. When we omit the condition that the complementation is an antitone involution, then we obtain skew-orthomodular posets. To each such poset we can assign a bounded λ-lattice in a non-unique way. Bounded λ-lattices are lattice-like algebras whose operations are not necessarily associative. We prove that any of the following properties for bounded posets with a unary operation can be characterized by certain identities of an arbitrary assigned λ-lattice: complementarity, orthogonality, almost skew-orthomodularity and skew-orthomodularity. Moreover, we prove corresponding independence results. Finally, we show that the variety of skew-orthomodular λ-lattices is congruence permutable as well as congruence regular.
Název v anglickém jazyce
Varieties corresponding to classes of complemented posets
Popis výsledku anglicky
As algebraic semantics of the logic of quantum mechanics there are usually used orthomodular posets, i.e. bounded posets with a complementation which is an antitone involution and where the join of orthogonal elements exists and the orthomodular law is satisfied. When we omit the condition that the complementation is an antitone involution, then we obtain skew-orthomodular posets. To each such poset we can assign a bounded λ-lattice in a non-unique way. Bounded λ-lattices are lattice-like algebras whose operations are not necessarily associative. We prove that any of the following properties for bounded posets with a unary operation can be characterized by certain identities of an arbitrary assigned λ-lattice: complementarity, orthogonality, almost skew-orthomodularity and skew-orthomodularity. Moreover, we prove corresponding independence results. Finally, we show that the variety of skew-orthomodular λ-lattices is congruence permutable as well as congruence regular.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Miskolc Mathematical Notes
ISSN
1787-2405
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
13
Strana od-do
611-623
Kód UT WoS článku
000741090800009
EID výsledku v databázi Scopus
2-s2.0-85108008019