On Bonds for Generalized One-Sided Concept Lattices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609800" target="_blank" >RIV/61989592:15310/21:73609800 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/9/3/211/htm" target="_blank" >https://www.mdpi.com/2227-7390/9/3/211/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9030211" target="_blank" >10.3390/math9030211</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Bonds for Generalized One-Sided Concept Lattices
Popis výsledku v původním jazyce
The generalized one-sided concept lattices represent a generalization of the classical FCA method convenient for a hierarchical analysis of object-attribute models with different types of attributes. The mentioned types of object-attribute models are formalized within the theory as formal contexts of a certain type. The aim of this paper is to investigate some intercontextual relationships represented by the notion of bond. A composition of bonds is defined in order to introduce the category of formal contexts with bonds as morphisms. It is shown that there is a one-to-one correspondence between bonds and supremum preserving mappings between the corresponding generalized one-sided concept lattices. As the main theoretical result it is shown that the introduced category of formal contexts with bonds is equivalent to the category of complete lattices with supremum preserving mappings as morphisms.
Název v anglickém jazyce
On Bonds for Generalized One-Sided Concept Lattices
Popis výsledku anglicky
The generalized one-sided concept lattices represent a generalization of the classical FCA method convenient for a hierarchical analysis of object-attribute models with different types of attributes. The mentioned types of object-attribute models are formalized within the theory as formal contexts of a certain type. The aim of this paper is to investigate some intercontextual relationships represented by the notion of bond. A composition of bonds is defined in order to introduce the category of formal contexts with bonds as morphisms. It is shown that there is a one-to-one correspondence between bonds and supremum preserving mappings between the corresponding generalized one-sided concept lattices. As the main theoretical result it is shown that the introduced category of formal contexts with bonds is equivalent to the category of complete lattices with supremum preserving mappings as morphisms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
"211-1"-"211-12"
Kód UT WoS článku
000615381700001
EID výsledku v databázi Scopus
2-s2.0-85099952426