A variety containing EMV-algebras and Pierce sheaves of EMV-algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609916" target="_blank" >RIV/61989592:15310/21:73609916 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165011420303626" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011420303626</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2020.09.011" target="_blank" >10.1016/j.fss.2020.09.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A variety containing EMV-algebras and Pierce sheaves of EMV-algebras
Popis výsledku v původním jazyce
According to [11], we know that the class of all EMV-algebras, EMV, is not a variety, since it is not closed under the subalgebra operator. The main aim of this work is to find the least variety containing EMV. For this reason, we introduced the variety wEMV of wEMV-algebras of type (2, 2, 2, 2, 0) induced by some identities. We show that, adding a derived binary operation circle minus to each EMV-algebra (M; boolean OR, boolean AND, circle plus, 0), we extend its language, so that (M; boolean OR, &AND, circle plus, circle minus, 0), called an associated wEMV-algebra, belongs to wEMV. Then using the congruence relations induced by the prime ideals of a wEMV-algebra, we prove that each wEMV-algebra can be embedded into an associated wEMV-algebra. We show that wEMV is the least subvariety of the variety of wEMV-algebras containing EMV. Finally, we study Pierce sheaves of proper EMV-algebras.
Název v anglickém jazyce
A variety containing EMV-algebras and Pierce sheaves of EMV-algebras
Popis výsledku anglicky
According to [11], we know that the class of all EMV-algebras, EMV, is not a variety, since it is not closed under the subalgebra operator. The main aim of this work is to find the least variety containing EMV. For this reason, we introduced the variety wEMV of wEMV-algebras of type (2, 2, 2, 2, 0) induced by some identities. We show that, adding a derived binary operation circle minus to each EMV-algebra (M; boolean OR, boolean AND, circle plus, 0), we extend its language, so that (M; boolean OR, &AND, circle plus, circle minus, 0), called an associated wEMV-algebra, belongs to wEMV. Then using the congruence relations induced by the prime ideals of a wEMV-algebra, we prove that each wEMV-algebra can be embedded into an associated wEMV-algebra. We show that wEMV is the least subvariety of the variety of wEMV-algebras containing EMV. Finally, we study Pierce sheaves of proper EMV-algebras.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
—
Svazek periodika
418
Číslo periodika v rámci svazku
AUG-SI
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
101-125
Kód UT WoS článku
000658282400006
EID výsledku v databázi Scopus
2-s2.0-85091689731