Statistical and machine learning techniques in human microbiome studies: Contemporary challenges and solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73610051" target="_blank" >RIV/61989592:15310/21:73610051 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fmicb.2021.635781/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fmicb.2021.635781/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fmicb.2021.635781" target="_blank" >10.3389/fmicb.2021.635781</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical and machine learning techniques in human microbiome studies: Contemporary challenges and solutions
Popis výsledku v původním jazyce
The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 "ML4Microbiome" that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies.
Název v anglickém jazyce
Statistical and machine learning techniques in human microbiome studies: Contemporary challenges and solutions
Popis výsledku anglicky
The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 "ML4Microbiome" that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Microbiology
ISSN
1664-302X
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
FEB
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
"635781-1"-"635781-9"
Kód UT WoS článku
000625979400001
EID výsledku v databázi Scopus
2-s2.0-85102370593