Unconditional measurement-based quantum computation with optomechanical continuous variables
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73610958" target="_blank" >RIV/61989592:15310/22:73610958 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/pra/pdf/10.1103/PhysRevA.105.012610" target="_blank" >https://journals.aps.org/pra/pdf/10.1103/PhysRevA.105.012610</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.105.012610" target="_blank" >10.1103/PhysRevA.105.012610</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unconditional measurement-based quantum computation with optomechanical continuous variables
Popis výsledku v původním jazyce
Universal quantum computation encoded over continuous variables can be achieved via Gaussian measurements acting on entangled non-Gaussian states. However, due to the weakness of available nonlinearities, generally these states can only be prepared conditionally, potentially with low probability. Here we show how universal quantum computation could be implemented unconditionally using an integrated platform able to sustain both linear and quadratic optomechanical-like interactions. Specifically, considering cavity opto- and electromechanical systems, we propose a realization of a driven-dissipative dynamics that deterministically prepares the required non-Gaussian cluster states-entangled squeezed states of multiple mechanical oscillators suitably interspersed with cubic-phase states. We next demonstrate how arbitrary Gaussian measurements on the cluster nodes can be performed by continuously monitoring the output cavity field. Finally, the feasibility requirements of this approach are analyzed in detail, suggesting that its building blocks are within reach of current technology.
Název v anglickém jazyce
Unconditional measurement-based quantum computation with optomechanical continuous variables
Popis výsledku anglicky
Universal quantum computation encoded over continuous variables can be achieved via Gaussian measurements acting on entangled non-Gaussian states. However, due to the weakness of available nonlinearities, generally these states can only be prepared conditionally, potentially with low probability. Here we show how universal quantum computation could be implemented unconditionally using an integrated platform able to sustain both linear and quadratic optomechanical-like interactions. Specifically, considering cavity opto- and electromechanical systems, we propose a realization of a driven-dissipative dynamics that deterministically prepares the required non-Gaussian cluster states-entangled squeezed states of multiple mechanical oscillators suitably interspersed with cubic-phase states. We next demonstrate how arbitrary Gaussian measurements on the cluster nodes can be performed by continuously monitoring the output cavity field. Finally, the feasibility requirements of this approach are analyzed in detail, suggesting that its building blocks are within reach of current technology.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-16577S" target="_blank" >GA20-16577S: Hybridní kvantová fyzika při nízkých teplotách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
2469-9934
Svazek periodika
105
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
"012610-1"-"012610-15"
Kód UT WoS článku
000747560000001
EID výsledku v databázi Scopus
2-s2.0-85123634725