Direct detection of quantum non-Gaussian light from a dispersively coupled single atom
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73612474" target="_blank" >RIV/61989592:15310/22:73612474 - isvavai.cz</a>
Výsledek na webu
<a href="https://quantum-journal.org/papers/q-2022-02-24-660/pdf/" target="_blank" >https://quantum-journal.org/papers/q-2022-02-24-660/pdf/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22331/q-2022-02-24-660" target="_blank" >10.22331/q-2022-02-24-660</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Direct detection of quantum non-Gaussian light from a dispersively coupled single atom
Popis výsledku v původním jazyce
Many applications in quantum communication, sensing and computation need provably quantum non-Gaussian light. Recently such light, witnessed by a negative Wigner function, has been estimated using homodyne tomography from a single atom dispersively coupled to a high-finesse cavity [17]. This opens an investigation of quantum non-Gaussian light for many experiments with atoms and solid-state emitters. However, at their early stage, an atom or emitter in a cavity system with different channels to the environment and additional noise are insufficient to produce negative Wigner functions. Moreover, homodyne detection is frequently challenging for such experiments. We analyse these issues and prove that such cavities can be used to emit quantum non-Gaussian light employing single-photon detection in the Hanbury Brown and Twiss configuration and quantum non-Gaussianity criteria suitable for this measurement. We investigate in detail cases of considerable cavity leakage when the negativity of the Wigner function disappears completely. Advantageously, quantum non-Gaussian light can be still conclusively proven for a large set of the cavity parameters at the cost of overall measurement time, even if noise is present.
Název v anglickém jazyce
Direct detection of quantum non-Gaussian light from a dispersively coupled single atom
Popis výsledku anglicky
Many applications in quantum communication, sensing and computation need provably quantum non-Gaussian light. Recently such light, witnessed by a negative Wigner function, has been estimated using homodyne tomography from a single atom dispersively coupled to a high-finesse cavity [17]. This opens an investigation of quantum non-Gaussian light for many experiments with atoms and solid-state emitters. However, at their early stage, an atom or emitter in a cavity system with different channels to the environment and additional noise are insufficient to produce negative Wigner functions. Moreover, homodyne detection is frequently challenging for such experiments. We analyse these issues and prove that such cavities can be used to emit quantum non-Gaussian light employing single-photon detection in the Hanbury Brown and Twiss configuration and quantum non-Gaussianity criteria suitable for this measurement. We investigate in detail cases of considerable cavity leakage when the negativity of the Wigner function disappears completely. Advantageously, quantum non-Gaussian light can be still conclusively proven for a large set of the cavity parameters at the cost of overall measurement time, even if noise is present.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Quantum
ISSN
2521-327X
e-ISSN
2521-327X
Svazek periodika
6
Číslo periodika v rámci svazku
FEB
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000761913700001
EID výsledku v databázi Scopus
2-s2.0-85127080260