Boolean matrix factorization with background knowledge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73613673" target="_blank" >RIV/61989592:15310/22:73613673 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S095070512200082X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S095070512200082X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2022.108261" target="_blank" >10.1016/j.knosys.2022.108261</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boolean matrix factorization with background knowledge
Popis výsledku v původním jazyce
Boolean matrix factorization (BMF) is a popular data analysis method summarizing the input data by Boolean factors. The Boolean nature ensures an easy interpretation of a particular factor, however, the interpretation of all discovered factors (as a whole) by domain experts may be difficult as the BMF methods seek only information in the data and do not reflect the experts understanding of data. In the paper, we propose a formalization of a novel variant of BMF reflecting expert's background knowledge—additional knowledge about the data—that is not part of the data, in the form of attribute weights, as well as an algorithm for it. Moreover, we show that the proposed algorithm, which significantly outperforms the state-of-the-art algorithm, provides encouraging results that are worth further investigation.
Název v anglickém jazyce
Boolean matrix factorization with background knowledge
Popis výsledku anglicky
Boolean matrix factorization (BMF) is a popular data analysis method summarizing the input data by Boolean factors. The Boolean nature ensures an easy interpretation of a particular factor, however, the interpretation of all discovered factors (as a whole) by domain experts may be difficult as the BMF methods seek only information in the data and do not reflect the experts understanding of data. In the paper, we propose a formalization of a novel variant of BMF reflecting expert's background knowledge—additional knowledge about the data—that is not part of the data, in the form of attribute weights, as well as an algorithm for it. Moreover, we show that the proposed algorithm, which significantly outperforms the state-of-the-art algorithm, provides encouraging results that are worth further investigation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
KNOWLEDGE-BASED SYSTEMS
ISSN
0950-7051
e-ISSN
1872-7409
Svazek periodika
241
Číslo periodika v rámci svazku
APR
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
"108261-1"-"108261-6"
Kód UT WoS článku
000788730900010
EID výsledku v databázi Scopus
2-s2.0-85124302917