The difference between semi-continuum model and Richards' equation for unsaturated porous media flow
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73613890" target="_blank" >RIV/61989592:15310/22:73613890 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-022-11437-9" target="_blank" >https://www.nature.com/articles/s41598-022-11437-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-022-11437-9" target="_blank" >10.1038/s41598-022-11437-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The difference between semi-continuum model and Richards' equation for unsaturated porous media flow
Popis výsledku v původním jazyce
Semi-continuum modelling of unsaturated porous media flow is based on representing the porous medium as a grid of non-infinitesimal blocks that retain the character of a porous medium. This approach is similar to the hybrid/multiscale modelling. Semi-continuum model is able to physically correctly describe diffusion-like flow, finger-like flow, and the transition between them. This article presents the limit of the semi-continuum model as the block size goes to zero. In the limiting process, the retention curve of each block scales with the block size and in the limit becomes a hysteresis operator of the Prandtl-type used in elasto-plasticity models. Mathematical analysis showed that the limit of the semi-continuum model is a hyperbolic-parabolic partial differential equation with a hysteresis operator of Prandl's type. This limit differs from the standard Richards' equation, which is a parabolic equation and is not able to describe finger-like flow.
Název v anglickém jazyce
The difference between semi-continuum model and Richards' equation for unsaturated porous media flow
Popis výsledku anglicky
Semi-continuum modelling of unsaturated porous media flow is based on representing the porous medium as a grid of non-infinitesimal blocks that retain the character of a porous medium. This approach is similar to the hybrid/multiscale modelling. Semi-continuum model is able to physically correctly describe diffusion-like flow, finger-like flow, and the transition between them. This article presents the limit of the semi-continuum model as the block size goes to zero. In the limiting process, the retention curve of each block scales with the block size and in the limit becomes a hysteresis operator of the Prandtl-type used in elasto-plasticity models. Mathematical analysis showed that the limit of the semi-continuum model is a hyperbolic-parabolic partial differential equation with a hysteresis operator of Prandl's type. This limit differs from the standard Richards' equation, which is a parabolic equation and is not able to describe finger-like flow.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
"7650-1"-"7650-12"
Kód UT WoS článku
000793383600041
EID výsledku v databázi Scopus
2-s2.0-85129703330