Taming numerical errors in simulations of continuous variable non-Gaussian state preparation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73613985" target="_blank" >RIV/61989592:15310/22:73613985 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-022-19506-9.pdf" target="_blank" >https://www.nature.com/articles/s41598-022-19506-9.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-022-19506-9" target="_blank" >10.1038/s41598-022-19506-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Taming numerical errors in simulations of continuous variable non-Gaussian state preparation
Popis výsledku v původním jazyce
Numerical simulation of continuous variable quantum state preparation is a necessary tool for optimization of existing quantum information processing protocols. A powerful instrument for such simulation is the numerical computation in the Fock state representation. It unavoidably uses an approximation of the infinite-dimensional Fock space by finite complex vector spaces implementable with classical digital computers. In this approximation we analyze the accuracy of several currently available methods for computation of the truncated coherent displacement operator. To overcome their limitations we propose an alternative with improved accuracy based on the standard matrix exponential. We then employ the method in analysis of non-Gaussian state preparation scheme based on coherent displacement of a two mode squeezed vacuum with subsequent photon counting measurement. We compare different detection mechanisms, including avalanche photodiodes, their cascades, and photon number resolving detectors in the context of engineering non-linearly squeezed cubic states and construction of qubit-like superpositions between vacuum and single photon states.
Název v anglickém jazyce
Taming numerical errors in simulations of continuous variable non-Gaussian state preparation
Popis výsledku anglicky
Numerical simulation of continuous variable quantum state preparation is a necessary tool for optimization of existing quantum information processing protocols. A powerful instrument for such simulation is the numerical computation in the Fock state representation. It unavoidably uses an approximation of the infinite-dimensional Fock space by finite complex vector spaces implementable with classical digital computers. In this approximation we analyze the accuracy of several currently available methods for computation of the truncated coherent displacement operator. To overcome their limitations we propose an alternative with improved accuracy based on the standard matrix exponential. We then employ the method in analysis of non-Gaussian state preparation scheme based on coherent displacement of a two mode squeezed vacuum with subsequent photon counting measurement. We compare different detection mechanisms, including avalanche photodiodes, their cascades, and photon number resolving detectors in the context of engineering non-linearly squeezed cubic states and construction of qubit-like superpositions between vacuum and single photon states.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/8C20002" target="_blank" >8C20002: Short-Range Optical Quantum Connections</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
"16574-1"-"16574-14"
Kód UT WoS článku
000864366600018
EID výsledku v databázi Scopus
2-s2.0-85139274034