Join-semilattices whose principal filters are pseudocomplemented
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73614847" target="_blank" >RIV/61989592:15310/22:73614847 - isvavai.cz</a>
Výsledek na webu
<a href="http://mat76.mat.uni-miskolc.hu/mnotes/download_article/3854.pdf" target="_blank" >http://mat76.mat.uni-miskolc.hu/mnotes/download_article/3854.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18514/MMN.2022.3854" target="_blank" >10.18514/MMN.2022.3854</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Join-semilattices whose principal filters are pseudocomplemented
Popis výsledku v původním jazyce
This paper deals with join-semilattices whose sections, i.e. principal filters, are pseudo -complemented lattices. The pseudocomplement of a V b in the section [b, 1] is denoted by a -b and can be considered as the connective implication in a certain kind of intuitionistic logic. Contrary to the case of Brouwerian semilattices, sections need not be distributive lattices. This essentially allows possible applications in non-classical logics. We present a connection of the semilattices mentioned in the beginning with the so-called non-classical implication semilattices which can be converted into I-algebras having everywhere defined operations. Moreover, we relate our structures to sectionally and relatively residuated semilattices which means that our logical structures are closely connected with substructural logics. We show that I-algebras form a congruence distributive, 3-permutable and weakly regular variety.
Název v anglickém jazyce
Join-semilattices whose principal filters are pseudocomplemented
Popis výsledku anglicky
This paper deals with join-semilattices whose sections, i.e. principal filters, are pseudo -complemented lattices. The pseudocomplement of a V b in the section [b, 1] is denoted by a -b and can be considered as the connective implication in a certain kind of intuitionistic logic. Contrary to the case of Brouwerian semilattices, sections need not be distributive lattices. This essentially allows possible applications in non-classical logics. We present a connection of the semilattices mentioned in the beginning with the so-called non-classical implication semilattices which can be converted into I-algebras having everywhere defined operations. Moreover, we relate our structures to sectionally and relatively residuated semilattices which means that our logical structures are closely connected with substructural logics. We show that I-algebras form a congruence distributive, 3-permutable and weakly regular variety.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Miskolc Mathematical Notes
ISSN
1787-2405
e-ISSN
1787-2413
Svazek periodika
23
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
19
Strana od-do
"559 "- 577
Kód UT WoS článku
000885368300003
EID výsledku v databázi Scopus
2-s2.0-85143813639