Archetypes of agri-environmental potential: a multi-scale typology for spatial stratification and upscaling in Europe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73615831" target="_blank" >RIV/61989592:15310/22:73615831 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1748-9326/ac9cf5/pdf" target="_blank" >https://iopscience.iop.org/article/10.1088/1748-9326/ac9cf5/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1748-9326/ac9cf5" target="_blank" >10.1088/1748-9326/ac9cf5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Archetypes of agri-environmental potential: a multi-scale typology for spatial stratification and upscaling in Europe
Popis výsledku v původním jazyce
Developing spatially-targeted policies for farmland in the European Union (EU) requires synthesized, spatially-explicit knowledge of agricultural systems and their environmental conditions. Such synthesis needs to be flexible and scalable in a way that allows the generalization of European landscapes and their agricultural potential into spatial units that are informative at any given resolution and extent. In recent years, typologies of agricultural lands have been substantially improved, however, agriculturally relevant aspects have yet to be included. We here provide a spatial classification approach for identifying archetypal patterns of agri-environmental potential in Europe based on machine-learning clustering of 17 variables on bioclimatic conditions, soil characteristics and topographical parameters. We improve existing typologies by (a) including more recent biophysical data (e.g. agriculturally-important soil parameters), (b) employing a fully data-driven approach that reduces subjectivity in identifying archetypal patterns, and (c) providing a scalable approach suitable both for the entire European continent as well as smaller geographical extents. We demonstrate the utility and scalability of our typology by comparing the archetypes with independent data on cropland cover and field size at the European scale and in three regional case studies in Germany, Czechia and Spain. The resulting archetypes can be used to support spatial stratification, upscaling and designation of more spatially-targeted agricultural policies, such as those in the context of the EU's Common Agricultural Policy post-2020.
Název v anglickém jazyce
Archetypes of agri-environmental potential: a multi-scale typology for spatial stratification and upscaling in Europe
Popis výsledku anglicky
Developing spatially-targeted policies for farmland in the European Union (EU) requires synthesized, spatially-explicit knowledge of agricultural systems and their environmental conditions. Such synthesis needs to be flexible and scalable in a way that allows the generalization of European landscapes and their agricultural potential into spatial units that are informative at any given resolution and extent. In recent years, typologies of agricultural lands have been substantially improved, however, agriculturally relevant aspects have yet to be included. We here provide a spatial classification approach for identifying archetypal patterns of agri-environmental potential in Europe based on machine-learning clustering of 17 variables on bioclimatic conditions, soil characteristics and topographical parameters. We improve existing typologies by (a) including more recent biophysical data (e.g. agriculturally-important soil parameters), (b) employing a fully data-driven approach that reduces subjectivity in identifying archetypal patterns, and (c) providing a scalable approach suitable both for the entire European continent as well as smaller geographical extents. We demonstrate the utility and scalability of our typology by comparing the archetypes with independent data on cropland cover and field size at the European scale and in three regional case studies in Germany, Czechia and Spain. The resulting archetypes can be used to support spatial stratification, upscaling and designation of more spatially-targeted agricultural policies, such as those in the context of the EU's Common Agricultural Policy post-2020.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Research Letters
ISSN
1748-9326
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
"115008-1"-"115008-20"
Kód UT WoS článku
000880405700001
EID výsledku v databázi Scopus
2-s2.0-85141939411