Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Archetypes of agri-environmental potential: a multi-scale typology for spatial stratification and upscaling in Europe

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73615831" target="_blank" >RIV/61989592:15310/22:73615831 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1748-9326/ac9cf5/pdf" target="_blank" >https://iopscience.iop.org/article/10.1088/1748-9326/ac9cf5/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1748-9326/ac9cf5" target="_blank" >10.1088/1748-9326/ac9cf5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Archetypes of agri-environmental potential: a multi-scale typology for spatial stratification and upscaling in Europe

  • Popis výsledku v původním jazyce

    Developing spatially-targeted policies for farmland in the European Union (EU) requires synthesized, spatially-explicit knowledge of agricultural systems and their environmental conditions. Such synthesis needs to be flexible and scalable in a way that allows the generalization of European landscapes and their agricultural potential into spatial units that are informative at any given resolution and extent. In recent years, typologies of agricultural lands have been substantially improved, however, agriculturally relevant aspects have yet to be included. We here provide a spatial classification approach for identifying archetypal patterns of agri-environmental potential in Europe based on machine-learning clustering of 17 variables on bioclimatic conditions, soil characteristics and topographical parameters. We improve existing typologies by (a) including more recent biophysical data (e.g. agriculturally-important soil parameters), (b) employing a fully data-driven approach that reduces subjectivity in identifying archetypal patterns, and (c) providing a scalable approach suitable both for the entire European continent as well as smaller geographical extents. We demonstrate the utility and scalability of our typology by comparing the archetypes with independent data on cropland cover and field size at the European scale and in three regional case studies in Germany, Czechia and Spain. The resulting archetypes can be used to support spatial stratification, upscaling and designation of more spatially-targeted agricultural policies, such as those in the context of the EU&apos;s Common Agricultural Policy post-2020.

  • Název v anglickém jazyce

    Archetypes of agri-environmental potential: a multi-scale typology for spatial stratification and upscaling in Europe

  • Popis výsledku anglicky

    Developing spatially-targeted policies for farmland in the European Union (EU) requires synthesized, spatially-explicit knowledge of agricultural systems and their environmental conditions. Such synthesis needs to be flexible and scalable in a way that allows the generalization of European landscapes and their agricultural potential into spatial units that are informative at any given resolution and extent. In recent years, typologies of agricultural lands have been substantially improved, however, agriculturally relevant aspects have yet to be included. We here provide a spatial classification approach for identifying archetypal patterns of agri-environmental potential in Europe based on machine-learning clustering of 17 variables on bioclimatic conditions, soil characteristics and topographical parameters. We improve existing typologies by (a) including more recent biophysical data (e.g. agriculturally-important soil parameters), (b) employing a fully data-driven approach that reduces subjectivity in identifying archetypal patterns, and (c) providing a scalable approach suitable both for the entire European continent as well as smaller geographical extents. We demonstrate the utility and scalability of our typology by comparing the archetypes with independent data on cropland cover and field size at the European scale and in three regional case studies in Germany, Czechia and Spain. The resulting archetypes can be used to support spatial stratification, upscaling and designation of more spatially-targeted agricultural policies, such as those in the context of the EU&apos;s Common Agricultural Policy post-2020.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Environmental Research Letters

  • ISSN

    1748-9326

  • e-ISSN

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

    "115008-1"-"115008-20"

  • Kód UT WoS článku

    000880405700001

  • EID výsledku v databázi Scopus

    2-s2.0-85141939411