Time-Dependent Laser Cavity Perturbation Theory: Exploring Future Nano-Structured Photonic Devices in Semi-Analytic way
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73615910" target="_blank" >RIV/61989592:15310/22:73615910 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27360/22:10250079 RIV/61989100:27740/22:10250079 RIV/61989100:27640/22:10250079
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9760173" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9760173</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JLT.2022.3168231" target="_blank" >10.1109/JLT.2022.3168231</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time-Dependent Laser Cavity Perturbation Theory: Exploring Future Nano-Structured Photonic Devices in Semi-Analytic way
Popis výsledku v původním jazyce
We present a theoretical framework, which successfully combines two different fields of photonics: i) the laser rate equations and ii) the cavity perturbation theory, focusing particularly on micro-cavity lasers with optical anisotropies. Our approach is formally analogous to quantum-mechanical time-dependent perturbation theory, in which however the gain medium and permittivity tensor distribution are perturbed instead of the Hamiltonian. Using the general vectorial Maxwell-Bloch equations as a starting point, we derive polarization-resolved coupled-mode equations, in which all relevant geometric and anisotropy-related laser parameters are imprinted in its coefficients. Closed-form coupled-mode equations offer physical insights like rate equations approaches and the precision comparable to brute-force numeric routines, thus being the time-saving alternative to finite-difference time-domain methods. The main advantage is that one calculates numerically the shapes of cold-cavity modes used to derive coupled-mode equations for one set of parameters and the broad landscape of parameters of interest is further studied in a perturbative way. This makes the method particularly interesting for semi-analytic studies of state-of-art devices such as the photonic crystal lasers, the liquid-crystal lasers or specifically spin-lasers, in which the interplay between injected spin and cavity birefrigence creates very promising platform for ultrafast data transfer technologies.
Název v anglickém jazyce
Time-Dependent Laser Cavity Perturbation Theory: Exploring Future Nano-Structured Photonic Devices in Semi-Analytic way
Popis výsledku anglicky
We present a theoretical framework, which successfully combines two different fields of photonics: i) the laser rate equations and ii) the cavity perturbation theory, focusing particularly on micro-cavity lasers with optical anisotropies. Our approach is formally analogous to quantum-mechanical time-dependent perturbation theory, in which however the gain medium and permittivity tensor distribution are perturbed instead of the Hamiltonian. Using the general vectorial Maxwell-Bloch equations as a starting point, we derive polarization-resolved coupled-mode equations, in which all relevant geometric and anisotropy-related laser parameters are imprinted in its coefficients. Closed-form coupled-mode equations offer physical insights like rate equations approaches and the precision comparable to brute-force numeric routines, thus being the time-saving alternative to finite-difference time-domain methods. The main advantage is that one calculates numerically the shapes of cold-cavity modes used to derive coupled-mode equations for one set of parameters and the broad landscape of parameters of interest is further studied in a perturbative way. This makes the method particularly interesting for semi-analytic studies of state-of-art devices such as the photonic crystal lasers, the liquid-crystal lasers or specifically spin-lasers, in which the interplay between injected spin and cavity birefrigence creates very promising platform for ultrafast data transfer technologies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF LIGHTWAVE TECHNOLOGY
ISSN
0733-8724
e-ISSN
1558-2213
Svazek periodika
40
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
4735-4745
Kód UT WoS článku
000824670400011
EID výsledku v databázi Scopus
2-s2.0-85128647181