Möbius product-based constructions of aggregation functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73616921" target="_blank" >RIV/61989592:15310/22:73616921 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165011422000033" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011422000033</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2022.01.002" target="_blank" >10.1016/j.fss.2022.01.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Möbius product-based constructions of aggregation functions
Popis výsledku v původním jazyce
Möbius transforms of capacities or games were considered as a tool for extensions of capacities to particular aggregation functions in several papers. This is, for example, the case of the Lovasz extension coinciding with the Choquet integral, or the Owen extension that is also known as multilinear extension. In this paper, a much deeper study of the links between the M delta bius transforms of real-valued functions defined on finite bounded posets and aggregation functions is performed. We introduce a M delta bius product of any two real-valued functions defined on an arbitrary finite bounded poset, and then, fixing the poset (2N, subset of), N = {1, ... , n}, we propose and discuss a construction method for n-ary aggregation functions based on the M delta bius product of any capacity on N and a real-valued function gx, x is an element of [0, 1]n, defined on 2N and determined by some appropriate n-ary aggregation function. We provide some necessary and some sufficient conditions for the introduced construction to yield an aggregation function for any capacity. For the binary case, a complete characterization of conditions under which our approach results in an aggregation function for each capacity m is given.
Název v anglickém jazyce
Möbius product-based constructions of aggregation functions
Popis výsledku anglicky
Möbius transforms of capacities or games were considered as a tool for extensions of capacities to particular aggregation functions in several papers. This is, for example, the case of the Lovasz extension coinciding with the Choquet integral, or the Owen extension that is also known as multilinear extension. In this paper, a much deeper study of the links between the M delta bius transforms of real-valued functions defined on finite bounded posets and aggregation functions is performed. We introduce a M delta bius product of any two real-valued functions defined on an arbitrary finite bounded poset, and then, fixing the poset (2N, subset of), N = {1, ... , n}, we propose and discuss a construction method for n-ary aggregation functions based on the M delta bius product of any capacity on N and a real-valued function gx, x is an element of [0, 1]n, defined on 2N and determined by some appropriate n-ary aggregation function. We provide some necessary and some sufficient conditions for the introduced construction to yield an aggregation function for any capacity. For the binary case, a complete characterization of conditions under which our approach results in an aggregation function for each capacity m is given.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
1872-6801
Svazek periodika
448
Číslo periodika v rámci svazku
SI
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
17-34
Kód UT WoS článku
000862759400002
EID výsledku v databázi Scopus
2-s2.0-85123719214