Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Pseudo-integral and generalized Choquet integral

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73616927" target="_blank" >RIV/61989592:15310/22:73616927 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0165011420304711" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011420304711</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fss.2020.12.005" target="_blank" >10.1016/j.fss.2020.12.005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Pseudo-integral and generalized Choquet integral

  • Popis výsledku v původním jazyce

    Due to many applications, the Choquet integral as a powerful tool for modeling non-deterministic problems needs to be further extended. Therefore the paper is devoted to a generalization of the Choquet integral. As a basis, the pseudo-integral for bounded integrand is extended to the case for nonnegative integrands at first, and then the generalized Choquet integral is defined. As special cases, pseudo-Choquet Stieltjes integrals, pseudo-fuzzy Stieltjes integrals, g-Choquet integrals, pseudo-(N)fuzzy integrals and pseudo-(S)fuzzy integrals are obtained, and various kinds of properties and convergence theorems are shown, meanwhile Markov, Jensen, Minkowski and Holder inequalities are proved. In the end, the generalized discrete Choquet integral is discussed. The obtained results for the generalized Choquet integral cover some previous results on different types of nonadditive integrals.

  • Název v anglickém jazyce

    Pseudo-integral and generalized Choquet integral

  • Popis výsledku anglicky

    Due to many applications, the Choquet integral as a powerful tool for modeling non-deterministic problems needs to be further extended. Therefore the paper is devoted to a generalization of the Choquet integral. As a basis, the pseudo-integral for bounded integrand is extended to the case for nonnegative integrands at first, and then the generalized Choquet integral is defined. As special cases, pseudo-Choquet Stieltjes integrals, pseudo-fuzzy Stieltjes integrals, g-Choquet integrals, pseudo-(N)fuzzy integrals and pseudo-(S)fuzzy integrals are obtained, and various kinds of properties and convergence theorems are shown, meanwhile Markov, Jensen, Minkowski and Holder inequalities are proved. In the end, the generalized discrete Choquet integral is discussed. The obtained results for the generalized Choquet integral cover some previous results on different types of nonadditive integrals.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-06915S" target="_blank" >GA18-06915S: Nové přístupy k agregačním operátorům v analýze a zpracování dat</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    FUZZY SETS AND SYSTEMS

  • ISSN

    0165-0114

  • e-ISSN

    1872-6801

  • Svazek periodika

    446

  • Číslo periodika v rámci svazku

    OCT

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    29

  • Strana od-do

    193-221

  • Kód UT WoS článku

    000862831200011

  • EID výsledku v databázi Scopus

    2-s2.0-85099499856