Fuzzy number-valued triangular norm-based decomposable time-stamped fuzzy measure and integration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73617007" target="_blank" >RIV/61989592:15310/22:73617007 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165011421001111" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011421001111</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2021.03.018" target="_blank" >10.1016/j.fss.2021.03.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy number-valued triangular norm-based decomposable time-stamped fuzzy measure and integration
Popis výsledku v původním jazyce
In this paper, we introduce a new concept of fuzzy measure and fuzzy integration which has a dynamic position and is different from previous approaches. Our definition of a new type of fuzzy measure deals with distance functions (special L-fuzzy numbers) and is based on continuous triangular norms. By this concept, we construct a new version of measure theory and integration which is more flexible since the measure of the set both depends on the set itself and on the other parameter named by time. Our approach is related to the idea of fuzzy metric spaces. We study some fuzzy measures induced by classical measures. An integral based on the introduced measures is proposed and studied, too. To complete our paper, we prove some limits and convergence theorems.
Název v anglickém jazyce
Fuzzy number-valued triangular norm-based decomposable time-stamped fuzzy measure and integration
Popis výsledku anglicky
In this paper, we introduce a new concept of fuzzy measure and fuzzy integration which has a dynamic position and is different from previous approaches. Our definition of a new type of fuzzy measure deals with distance functions (special L-fuzzy numbers) and is based on continuous triangular norms. By this concept, we construct a new version of measure theory and integration which is more flexible since the measure of the set both depends on the set itself and on the other parameter named by time. Our approach is related to the idea of fuzzy metric spaces. We study some fuzzy measures induced by classical measures. An integral based on the introduced measures is proposed and studied, too. To complete our paper, we prove some limits and convergence theorems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
1872-6801
Svazek periodika
430
Číslo periodika v rámci svazku
FEB
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
30
Strana od-do
144-173
Kód UT WoS článku
000752563000012
EID výsledku v databázi Scopus
2-s2.0-85104447278