Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Bonferroni mean-type pre-aggregation operators construction and generalization: Application to edge detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73617147" target="_blank" >RIV/61989592:15310/22:73617147 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1566253521002268" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1566253521002268</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.inffus.2021.11.002" target="_blank" >10.1016/j.inffus.2021.11.002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Bonferroni mean-type pre-aggregation operators construction and generalization: Application to edge detection

  • Popis výsledku v původním jazyce

    In recent years, immense interest in the exploration of the generalized version of the monotonicity condition has been significantly accomplished by the researchers. The intention behind generalizing the monotonicity condition is to envelop many prime functions which are of huge interest in the domain of mathematical applications such as classification problems, image processing, decision-making systems, etc. In this regard, the framework of the pre-aggregation operators was introduced to generalize the notion of monotonicity in the traditionally defined concept of aggregation operators. Such functions have extended the group of operators utilized for information accumulation by considering directional monotonicity with respect to a specified vector. This study emphasizes the systematized exploration of the theoretical framework of the Bonferroni mean-type (BM-type) pre-aggregation operators. We propose the construction methodology of the BM-type pre-aggregation operators by suitably befitting preferable functions to provide a descriptive arrangement, which is quite adaptable, understandable, and interpretable. First, a construction mechanism is proposed by utilizing a bivariate function M. To enhance the potentiality of the proposed operator, a generalized variation of it has been proposed by suitably using two functions M and M∗, respectively. The primary step for an object recognition problem is edge detection and is considered as an important tool in image processing systems. For the applicatory purpose, an edge detection algorithm based on the proposed BM-type pre-aggregation operator has been presented with more emphasis given to the feature image extraction. A comprehensive comparative study has been made to assess the results obtained through the proposed edge detection algorithm with some other well-known edge detectors extensively utilized in the literature

  • Název v anglickém jazyce

    The Bonferroni mean-type pre-aggregation operators construction and generalization: Application to edge detection

  • Popis výsledku anglicky

    In recent years, immense interest in the exploration of the generalized version of the monotonicity condition has been significantly accomplished by the researchers. The intention behind generalizing the monotonicity condition is to envelop many prime functions which are of huge interest in the domain of mathematical applications such as classification problems, image processing, decision-making systems, etc. In this regard, the framework of the pre-aggregation operators was introduced to generalize the notion of monotonicity in the traditionally defined concept of aggregation operators. Such functions have extended the group of operators utilized for information accumulation by considering directional monotonicity with respect to a specified vector. This study emphasizes the systematized exploration of the theoretical framework of the Bonferroni mean-type (BM-type) pre-aggregation operators. We propose the construction methodology of the BM-type pre-aggregation operators by suitably befitting preferable functions to provide a descriptive arrangement, which is quite adaptable, understandable, and interpretable. First, a construction mechanism is proposed by utilizing a bivariate function M. To enhance the potentiality of the proposed operator, a generalized variation of it has been proposed by suitably using two functions M and M∗, respectively. The primary step for an object recognition problem is edge detection and is considered as an important tool in image processing systems. For the applicatory purpose, an edge detection algorithm based on the proposed BM-type pre-aggregation operator has been presented with more emphasis given to the feature image extraction. A comprehensive comparative study has been made to assess the results obtained through the proposed edge detection algorithm with some other well-known edge detectors extensively utilized in the literature

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information Fusion

  • ISSN

    1566-2535

  • e-ISSN

    1872-6305

  • Svazek periodika

    80

  • Číslo periodika v rámci svazku

    APR

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    226-240

  • Kód UT WoS článku

    000724278200002

  • EID výsledku v databázi Scopus

    2-s2.0-85121013114