Classification of Continuous Distributional Data Using the Logratio Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73617310" target="_blank" >RIV/61989592:15310/22:73617310 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1201/9781315370545-9" target="_blank" >http://dx.doi.org/10.1201/9781315370545-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1201/9781315370545-9" target="_blank" >10.1201/9781315370545-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of Continuous Distributional Data Using the Logratio Approach
Popis výsledku v původním jazyce
One of the fundamental tasks in statistics is to classify observations into one of predefined classes, whether the observations are of multivariate or functional character. When considering distributional data, suitable classification methods honouring the data specificities are yet to be developed. In this work, a classification method for distributional data represented as probability density functions (PDFs) is proposed. The method uses the centred log-ratio (clr) transformation to adapt functional linear discriminant analysis to the distributional setting. Within the proposed setting, each functional observation is projected into a reduced discriminant space, and the classification itself is then based on minimizing the distance between the linear projections of the class representatives and those of the functional observations. The introduced method is demonstrated on geological data consisting of particle size distribution of 250 soil samples from four measuring sites in Moravia region, Czech Republic.
Název v anglickém jazyce
Classification of Continuous Distributional Data Using the Logratio Approach
Popis výsledku anglicky
One of the fundamental tasks in statistics is to classify observations into one of predefined classes, whether the observations are of multivariate or functional character. When considering distributional data, suitable classification methods honouring the data specificities are yet to be developed. In this work, a classification method for distributional data represented as probability density functions (PDFs) is proposed. The method uses the centred log-ratio (clr) transformation to adapt functional linear discriminant analysis to the distributional setting. Within the proposed setting, each functional observation is projected into a reduced discriminant space, and the classification itself is then based on minimizing the distance between the linear projections of the class representatives and those of the functional observations. The introduced method is demonstrated on geological data consisting of particle size distribution of 250 soil samples from four measuring sites in Moravia region, Czech Republic.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01768S" target="_blank" >GA19-01768S: Separace geochemických signálů v sedimentech: aplikace pokročilých statistických metod na rozsáhlé geochemické datové soubory</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Analysis of Distributional Data
ISBN
978-1-4987-2545-3
Počet stran výsledku
20
Strana od-do
183-202
Počet stran knihy
376
Název nakladatele
Chapman & Hall
Místo vydání
London
Kód UT WoS kapitoly
—