Deriving efficacy from basic uncertain information and uncertain Choquet Integral
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73617150" target="_blank" >RIV/61989592:15310/23:73617150 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/03081079.2022.2104268" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/03081079.2022.2104268</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03081079.2022.2104268" target="_blank" >10.1080/03081079.2022.2104268</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deriving efficacy from basic uncertain information and uncertain Choquet Integral
Popis výsledku v původním jazyce
Basic Uncertain Information (BUI) as a newly introduced concept generalized a wide range of uncertain information. We discuss and compare some methods to derive efficacy from given BUI collection, which is helpful in decision aid. With BUI collection, we also discuss the technique of using Choquet Integral to aggregate those BUI and return closed intervals as final aggregation results, and the whole aggregation is then called Uncertain Choquet Integral. We also discuss Uncertain Choquet Integral with preference, which considers all the information about optimistic/pessimistic preferences of decision makers and in given fuzzy measure. Uncertain Choquet Integral with preference returns real value result instead of closed interval, and it is a type of generalization of Choquet Integral (when all value information are certain) which can be well used in uncertain information environments.
Název v anglickém jazyce
Deriving efficacy from basic uncertain information and uncertain Choquet Integral
Popis výsledku anglicky
Basic Uncertain Information (BUI) as a newly introduced concept generalized a wide range of uncertain information. We discuss and compare some methods to derive efficacy from given BUI collection, which is helpful in decision aid. With BUI collection, we also discuss the technique of using Choquet Integral to aggregate those BUI and return closed intervals as final aggregation results, and the whole aggregation is then called Uncertain Choquet Integral. We also discuss Uncertain Choquet Integral with preference, which considers all the information about optimistic/pessimistic preferences of decision makers and in given fuzzy measure. Uncertain Choquet Integral with preference returns real value result instead of closed interval, and it is a type of generalization of Choquet Integral (when all value information are certain) which can be well used in uncertain information environments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS
ISSN
0308-1079
e-ISSN
1563-5104
Svazek periodika
52
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
72-85
Kód UT WoS článku
000839551600001
EID výsledku v databázi Scopus
2-s2.0-85135824040