Non-Gaussian quantum state generation by multi-photon subtraction at the telecommunication wavelength
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73619000" target="_blank" >RIV/61989592:15310/23:73619000 - isvavai.cz</a>
Výsledek na webu
<a href="https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-8-12865&id=528766" target="_blank" >https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-8-12865&id=528766</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1364/OE.486270" target="_blank" >10.1364/OE.486270</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-Gaussian quantum state generation by multi-photon subtraction at the telecommunication wavelength
Popis výsledku v původním jazyce
In the field of continuous-variable quantum information processing, non-Gaussian states with negative values of the Wigner function are crucial for the development of a fault-tolerant universal quantum computer. While several non-Gaussian states have been generated experimentally, none have been created using ultrashort optical wave packets, which are necessary for high-speed quantum computation, in the telecommunication wavelength band where mature optical communication technology is available. In this paper, we present the generation of non-Gaussian states on wave packets with a short 8-ps duration in the 1545.32 nm telecommunication wavelength band using photon subtraction up to three photons. We used a low-loss, quasi-single spatial mode waveguide optical parametric amplifier, a superconducting transition edge sensor, and a phase-locked pulsed homodyne measurement system to observe negative values of the Wigner function without loss correction up to three-photon subtraction. These results can be extended to the generation of more complicated non-Gaussian states and are a key technology in the pursuit of high-speed optical quantum computation.
Název v anglickém jazyce
Non-Gaussian quantum state generation by multi-photon subtraction at the telecommunication wavelength
Popis výsledku anglicky
In the field of continuous-variable quantum information processing, non-Gaussian states with negative values of the Wigner function are crucial for the development of a fault-tolerant universal quantum computer. While several non-Gaussian states have been generated experimentally, none have been created using ultrashort optical wave packets, which are necessary for high-speed quantum computation, in the telecommunication wavelength band where mature optical communication technology is available. In this paper, we present the generation of non-Gaussian states on wave packets with a short 8-ps duration in the 1545.32 nm telecommunication wavelength band using photon subtraction up to three photons. We used a low-loss, quasi-single spatial mode waveguide optical parametric amplifier, a superconducting transition edge sensor, and a phase-locked pulsed homodyne measurement system to observe negative values of the Wigner function without loss correction up to three-photon subtraction. These results can be extended to the generation of more complicated non-Gaussian states and are a key technology in the pursuit of high-speed optical quantum computation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
OPTICS EXPRESS
ISSN
1094-4087
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
12865-12879
Kód UT WoS článku
000975304700002
EID výsledku v databázi Scopus
2-s2.0-85152484597