Fundamental limitations to key distillation from Gaussian states with Gaussian operations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73619923" target="_blank" >RIV/61989592:15310/23:73619923 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033153" target="_blank" >https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033153</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevResearch.5.033153" target="_blank" >10.1103/PhysRevResearch.5.033153</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fundamental limitations to key distillation from Gaussian states with Gaussian operations
Popis výsledku v původním jazyce
We establish fundamental upper bounds on the amount of secret key that can be extracted from quantum Gaussian states by using local Gaussian operations, local classical processing, and public communication. For one-way public communication or when two-way public communication is allowed but Alice and Bob first perform destructive local Gaussian measurements, we prove that the key is bounded by the Rényi-2 Gaussian entanglement of formation EGF,2. The saturation of this inequality for pure Gaussian states provides an operational interpretation of the Rényi-2 entropy of entanglement as the secret key rate of pure Gaussian states accessible with Gaussian operations and one-way communication. In the general setting of two-way communication and arbitrary interactive protocols, we argue that 2EGF,2 still serves as an upper bound on the extractable key. We conjecture that the factor of 2 is spurious, suggesting that EGF,2 coincides with the secret key rate of Gaussian states under Gaussian measurements and two-way public communication. We use these results to prove a gap between the secret key rates obtainable with arbitrary versus Gaussian operations. This gap is observed for states produced by sending one half of a two-mode squeezed vacuum through a pure loss channel, in the regime of sufficiently low squeezing or sufficiently high transmissivity. Finally, for a wide class of Gaussian states, including all two-mode states, we prove a recently proposed conjecture on the equality between EGF,2 and the Gaussian intrinsic entanglement. The unified entanglement quantifier emerging from such an equality is then endowed with a direct operational interpretation as the value of a quantum teleportation game.
Název v anglickém jazyce
Fundamental limitations to key distillation from Gaussian states with Gaussian operations
Popis výsledku anglicky
We establish fundamental upper bounds on the amount of secret key that can be extracted from quantum Gaussian states by using local Gaussian operations, local classical processing, and public communication. For one-way public communication or when two-way public communication is allowed but Alice and Bob first perform destructive local Gaussian measurements, we prove that the key is bounded by the Rényi-2 Gaussian entanglement of formation EGF,2. The saturation of this inequality for pure Gaussian states provides an operational interpretation of the Rényi-2 entropy of entanglement as the secret key rate of pure Gaussian states accessible with Gaussian operations and one-way communication. In the general setting of two-way communication and arbitrary interactive protocols, we argue that 2EGF,2 still serves as an upper bound on the extractable key. We conjecture that the factor of 2 is spurious, suggesting that EGF,2 coincides with the secret key rate of Gaussian states under Gaussian measurements and two-way public communication. We use these results to prove a gap between the secret key rates obtainable with arbitrary versus Gaussian operations. This gap is observed for states produced by sending one half of a two-mode squeezed vacuum through a pure loss channel, in the regime of sufficiently low squeezing or sufficiently high transmissivity. Finally, for a wide class of Gaussian states, including all two-mode states, we prove a recently proposed conjecture on the equality between EGF,2 and the Gaussian intrinsic entanglement. The unified entanglement quantifier emerging from such an equality is then endowed with a direct operational interpretation as the value of a quantum teleportation game.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/8C22002" target="_blank" >8C22002: Continuous-Variable Multi-User Quantum Key Distribution for 5G and distributed storage applications</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Research
ISSN
2643-1564
e-ISSN
2643-1564
Svazek periodika
5
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
"033153-1"-"033153-24"
Kód UT WoS článku
001079200800003
EID výsledku v databázi Scopus
2-s2.0-85172910850