Sugeno-Like Operators in Preference and Uncertain Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73621110" target="_blank" >RIV/61989592:15310/23:73621110 - isvavai.cz</a>
Výsledek na webu
<a href="https://obd.upol.cz/id_publ/333200997" target="_blank" >https://obd.upol.cz/id_publ/333200997</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2022.3217369" target="_blank" >10.1109/TFUZZ.2022.3217369</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sugeno-Like Operators in Preference and Uncertain Environments
Popis výsledku v původním jazyce
Sugeno-like operators are binary operations-based generalization of Sugeno integral and are still defined on real valued fuzzy measures. This article discusses the aggregation methods in the situation where both inputs and fuzzy measures are attached with numerical uncertainties. That is, when an input vector and a fuzzy measure are given, each of the entries of the vector and the measure value on each subset can be attached with numerical uncertainty degrees. To fulfill this meaningful aim of performing Sugeno-like aggregation with numerical uncertainties, it needs two parts of work. We first formally define basic uncertain vector and basic uncertain fuzzy measure. Then, we discuss the methods to construct or adjust basic uncertain vector and basic uncertain fuzzy measure in two situations, the general fuzzy measure situation and the probability measure only situation, respectively. With uncertain input and uncertain fuzzy measure, we then accordingly propose the corresponding restricted Sugeno-like operator, for which some different logic restrictions are analyzed. All the proposals also have full consistency for they can immediately degenerates into Sugeno-like operator when the attached uncertainties disappear.
Název v anglickém jazyce
Sugeno-Like Operators in Preference and Uncertain Environments
Popis výsledku anglicky
Sugeno-like operators are binary operations-based generalization of Sugeno integral and are still defined on real valued fuzzy measures. This article discusses the aggregation methods in the situation where both inputs and fuzzy measures are attached with numerical uncertainties. That is, when an input vector and a fuzzy measure are given, each of the entries of the vector and the measure value on each subset can be attached with numerical uncertainty degrees. To fulfill this meaningful aim of performing Sugeno-like aggregation with numerical uncertainties, it needs two parts of work. We first formally define basic uncertain vector and basic uncertain fuzzy measure. Then, we discuss the methods to construct or adjust basic uncertain vector and basic uncertain fuzzy measure in two situations, the general fuzzy measure situation and the probability measure only situation, respectively. With uncertain input and uncertain fuzzy measure, we then accordingly propose the corresponding restricted Sugeno-like operator, for which some different logic restrictions are analyzed. All the proposals also have full consistency for they can immediately degenerates into Sugeno-like operator when the attached uncertainties disappear.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON FUZZY SYSTEMS
ISSN
1063-6706
e-ISSN
1941-0034
Svazek periodika
31
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
2092-2098
Kód UT WoS článku
001001059800028
EID výsledku v databázi Scopus
2-s2.0-85141535993