Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fully solvable finite simplex lattices with open boundaries in arbitrary dimensions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73622270" target="_blank" >RIV/61989592:15310/23:73622270 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.043092" target="_blank" >https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.043092</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevResearch.5.043092" target="_blank" >10.1103/PhysRevResearch.5.043092</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fully solvable finite simplex lattices with open boundaries in arbitrary dimensions

  • Popis výsledku v původním jazyce

    Finite simplex lattice models are used in different branches of science, e.g., in condensed-matter physics, when studying frustrated magnetic systems and non-Hermitian localization phenomena; or in chemistry, when describing experiments with mixtures. An n-simplex represents the simplest possible polytope in n dimensions, e.g., a line segment, a triangle, anda tetrahedron in one, two, and three dimensions, respectively. In this work, we show that various fully solvable, in general non-Hermitian, n-simplex lattice models with open boundaries can be constructed from the high-order field-moments space of quadratic bosonic systems. Namely, we demonstrate that such n-simplex lattices can be formed by a dimensional reduction of highly degenerate iterated polytope chains in (k &gt; n)-dimensions, which naturally emerge in the field-moments space. Our findings indicate that the field-moments space of bosonic systems provides a versatile platform for simulating real-space n-simplex lattices exhibiting non-Hermitian phenomena, and it yields valuable insights into the structure of many-body systems exhibiting similar complexity. Among a variety of practical applications, these simplex structures can offer a physical setting for implementing the discrete fractional Fourier transform, an indispensable tool for both quantum and classical signal processing.

  • Název v anglickém jazyce

    Fully solvable finite simplex lattices with open boundaries in arbitrary dimensions

  • Popis výsledku anglicky

    Finite simplex lattice models are used in different branches of science, e.g., in condensed-matter physics, when studying frustrated magnetic systems and non-Hermitian localization phenomena; or in chemistry, when describing experiments with mixtures. An n-simplex represents the simplest possible polytope in n dimensions, e.g., a line segment, a triangle, anda tetrahedron in one, two, and three dimensions, respectively. In this work, we show that various fully solvable, in general non-Hermitian, n-simplex lattice models with open boundaries can be constructed from the high-order field-moments space of quadratic bosonic systems. Namely, we demonstrate that such n-simplex lattices can be formed by a dimensional reduction of highly degenerate iterated polytope chains in (k &gt; n)-dimensions, which naturally emerge in the field-moments space. Our findings indicate that the field-moments space of bosonic systems provides a versatile platform for simulating real-space n-simplex lattices exhibiting non-Hermitian phenomena, and it yields valuable insights into the structure of many-body systems exhibiting similar complexity. Among a variety of practical applications, these simplex structures can offer a physical setting for implementing the discrete fractional Fourier transform, an indispensable tool for both quantum and classical signal processing.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review Research

  • ISSN

    2643-1564

  • e-ISSN

    2643-1564

  • Svazek periodika

    5

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    "043092-1"-"043092-15"

  • Kód UT WoS článku

    001098159100002

  • EID výsledku v databázi Scopus

    2-s2.0-85175403841