Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quantum non-Gaussian optomechanics and electromechanics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73621541" target="_blank" >RIV/61989592:15310/24:73621541 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0079672723000447" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0079672723000447</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.pquantelec.2023.100495" target="_blank" >10.1016/j.pquantelec.2023.100495</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quantum non-Gaussian optomechanics and electromechanics

  • Popis výsledku v původním jazyce

    Mechanical systems prepared in quantum non-Gaussian states constitute a new advanced class of phenomena breaking the laws of classical physics. Specifically, such mechanical states cannot be described as any mixture of the Gaussian states produced by operations described by Hamiltonians at most quadratic in position and momentum, such as phase rotations, squeezing operations and linear driving. Therefore, they form a class of resourceful states for quantum technological tasks such as metrology, sensing, simulation and computation. Quantum opto- and electromechanics are advanced platforms for quantum mechanical experiments with broad applications offering various methods for preparing such mechanical quantum non-Gaussian states. The suitability of these platforms as transducers additionally allows the integration of such mechanical states into a variety of other related platforms. Here, we summarize the current techniques for creating these states, emphasizing those that have had experimental success and looking to methods that show promise for future experiments. By collating these results, we expect to stimulate new ideas for non-Gaussian state preparation in these fields, resulting in the realization of further experiments. Moreover, we provide concise and clear explanations of the milestones of research in the quantum non-Gaussianity of mechanical states and its implementation and verification in a laboratory setting.

  • Název v anglickém jazyce

    Quantum non-Gaussian optomechanics and electromechanics

  • Popis výsledku anglicky

    Mechanical systems prepared in quantum non-Gaussian states constitute a new advanced class of phenomena breaking the laws of classical physics. Specifically, such mechanical states cannot be described as any mixture of the Gaussian states produced by operations described by Hamiltonians at most quadratic in position and momentum, such as phase rotations, squeezing operations and linear driving. Therefore, they form a class of resourceful states for quantum technological tasks such as metrology, sensing, simulation and computation. Quantum opto- and electromechanics are advanced platforms for quantum mechanical experiments with broad applications offering various methods for preparing such mechanical quantum non-Gaussian states. The suitability of these platforms as transducers additionally allows the integration of such mechanical states into a variety of other related platforms. Here, we summarize the current techniques for creating these states, emphasizing those that have had experimental success and looking to methods that show promise for future experiments. By collating these results, we expect to stimulate new ideas for non-Gaussian state preparation in these fields, resulting in the realization of further experiments. Moreover, we provide concise and clear explanations of the milestones of research in the quantum non-Gaussianity of mechanical states and its implementation and verification in a laboratory setting.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA23-06308S" target="_blank" >GA23-06308S: Jednofononová kvantová akustika</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PROGRESS IN QUANTUM ELECTRONICS

  • ISSN

    0079-6727

  • e-ISSN

    1873-1627

  • Svazek periodika

    93

  • Číslo periodika v rámci svazku

    JAN

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    40

  • Strana od-do

    "100495-1"-"100495-40"

  • Kód UT WoS článku

    001199807800001

  • EID výsledku v databázi Scopus

    2-s2.0-85180601868