Excitation spectrum of a multilevel atom coupled with a dielectric nanostructure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73622398" target="_blank" >RIV/61989592:15310/24:73622398 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/pra/pdf/10.1103/PhysRevA.109.013714" target="_blank" >https://journals.aps.org/pra/pdf/10.1103/PhysRevA.109.013714</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.109.013714" target="_blank" >10.1103/PhysRevA.109.013714</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Excitation spectrum of a multilevel atom coupled with a dielectric nanostructure
Popis výsledku v původním jazyce
We develop a microscopic calculation scheme for the excitation spectrum of a single-electron atom localized near a dielectric nanostructure. The atom originally has an arbitrary degenerate structure of its Zeeman sublevels on its closed optical transition and we follow how the excitation spectrum would be modified by its radiative coupling with a mesoscopically small dielectric sample of arbitrary shape. The dielectric medium is modeled by a dense ensemble of V-type atoms having the same dielectric permittivity near the transition frequency of the reference atom. Our numerical simulations predict strong coupling for some specific configurations and then suggest promising options for quantum interface and quantum information processing at the level of single photons and atoms. In particular, the strong resonance interaction between atom(s) and light, propagating through a photonic crystal waveguide, justifies as realistic the scenario of a signal light coupling with a small atomic array consisting of a few atoms. As a potential implication, the directional one-dimensional resonance scattering, expected in such systems, could provide a quantum bus by entangling distant atoms integrated into a quantum register.
Název v anglickém jazyce
Excitation spectrum of a multilevel atom coupled with a dielectric nanostructure
Popis výsledku anglicky
We develop a microscopic calculation scheme for the excitation spectrum of a single-electron atom localized near a dielectric nanostructure. The atom originally has an arbitrary degenerate structure of its Zeeman sublevels on its closed optical transition and we follow how the excitation spectrum would be modified by its radiative coupling with a mesoscopically small dielectric sample of arbitrary shape. The dielectric medium is modeled by a dense ensemble of V-type atoms having the same dielectric permittivity near the transition frequency of the reference atom. Our numerical simulations predict strong coupling for some specific configurations and then suggest promising options for quantum interface and quantum information processing at the level of single photons and atoms. In particular, the strong resonance interaction between atom(s) and light, propagating through a photonic crystal waveguide, justifies as realistic the scenario of a signal light coupling with a small atomic array consisting of a few atoms. As a potential implication, the directional one-dimensional resonance scattering, expected in such systems, could provide a quantum bus by entangling distant atoms integrated into a quantum register.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-06308S" target="_blank" >GA23-06308S: Jednofononová kvantová akustika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
2469-9934
Svazek periodika
109
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
"013714-1"-"013714-16"
Kód UT WoS článku
001157092300004
EID výsledku v databázi Scopus
2-s2.0-85182735303