Correlated qubit coherences stimulated by thermal energy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73625534" target="_blank" >RIV/61989592:15310/24:73625534 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1367-2630/ad6bb6" target="_blank" >https://iopscience.iop.org/article/10.1088/1367-2630/ad6bb6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1367-2630/ad6bb6" target="_blank" >10.1088/1367-2630/ad6bb6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Correlated qubit coherences stimulated by thermal energy
Popis výsledku v původním jazyce
Quantum coherence, the ability of a system to be in a quantum superposition of pure states, is a distinct feature of quantum mechanics that has no direct analog in classical mechanics. Quantum states that possess coherence efficiently outperform their classical counterparts in fundamental science and practical applications, including quantum metrology, computation, and simulation. Generation of coherence without the need to employ strong classical drives remains a challenging and not yet experimentally explored task. Beyond individual thermally-induced coherences already proposed for different experiments, correlated quantum coherences of multiple qubits represent a new target. We prove that correlated qubit coherence emerges thermally stimulated from incoherent states in hybrid superconducting and solid-state systems comprising non-interacting qubits coupled only via Dicke-type interaction to a shared thermal mechanical oscillator, exhibits coherences beyond the Tavis–Cummings coupling and, moreover, can be advantageous in quantum sensing.
Název v anglickém jazyce
Correlated qubit coherences stimulated by thermal energy
Popis výsledku anglicky
Quantum coherence, the ability of a system to be in a quantum superposition of pure states, is a distinct feature of quantum mechanics that has no direct analog in classical mechanics. Quantum states that possess coherence efficiently outperform their classical counterparts in fundamental science and practical applications, including quantum metrology, computation, and simulation. Generation of coherence without the need to employ strong classical drives remains a challenging and not yet experimentally explored task. Beyond individual thermally-induced coherences already proposed for different experiments, correlated quantum coherences of multiple qubits represent a new target. We prove that correlated qubit coherence emerges thermally stimulated from incoherent states in hybrid superconducting and solid-state systems comprising non-interacting qubits coupled only via Dicke-type interaction to a shared thermal mechanical oscillator, exhibits coherences beyond the Tavis–Cummings coupling and, moreover, can be advantageous in quantum sensing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
New Journal of Physics
ISSN
1367-2630
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
"083022-1"-"083022-13"
Kód UT WoS článku
001294100600001
EID výsledku v databázi Scopus
2-s2.0-85201771767