Unifying uncertainties for rotorlike quantum systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73625768" target="_blank" >RIV/61989592:15310/24:73625768 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/pra/pdf/10.1103/PhysRevA.110.032208" target="_blank" >https://journals.aps.org/pra/pdf/10.1103/PhysRevA.110.032208</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.110.032208" target="_blank" >10.1103/PhysRevA.110.032208</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unifying uncertainties for rotorlike quantum systems
Popis výsledku v původním jazyce
The quantum rotor represents, after the harmonic oscillator, the next obvious quantum system to study the complementary pair of variables: the angular momentum and the unitary shift operator in angular momentum. Proper quantification of uncertainties and the incompatibility of these two operators are thus essential for applications of rotorlike quantum systems. While angular momentum uncertainty is characterized by variance, several uncertainty measures have been proposed for the shift operator, with dispersion the simplest example. We establish a hierarchy of those measures and corresponding uncertainty relations which are all perfectly or almost perfectly saturated by a tomographically complete set of von Mises states. Building on the interpretation of dispersion as the moment of inertia of the unit ring we then show that the other measures also possess the same mechanical interpretation. This unifying perspective allows us to express all measures as a particular instance of a single generic angular uncertainty measure. The importance of these measures is then highlighted by applying the simplest two of them to derive optimal simultaneous measurements of the angular momentum and the shift operator. Finally, we argue that the model of quantum rotor extends beyond its mechanical meaning with promising applications in the fields of singular optics, superconductive circuits with a Josephson junction, or optimal pulse shaping in the time-frequency domain. Our findings lay the groundwork for quantum-information and metrological applications of the quantum rotor and point to its interdisciplinary nature.
Název v anglickém jazyce
Unifying uncertainties for rotorlike quantum systems
Popis výsledku anglicky
The quantum rotor represents, after the harmonic oscillator, the next obvious quantum system to study the complementary pair of variables: the angular momentum and the unitary shift operator in angular momentum. Proper quantification of uncertainties and the incompatibility of these two operators are thus essential for applications of rotorlike quantum systems. While angular momentum uncertainty is characterized by variance, several uncertainty measures have been proposed for the shift operator, with dispersion the simplest example. We establish a hierarchy of those measures and corresponding uncertainty relations which are all perfectly or almost perfectly saturated by a tomographically complete set of von Mises states. Building on the interpretation of dispersion as the moment of inertia of the unit ring we then show that the other measures also possess the same mechanical interpretation. This unifying perspective allows us to express all measures as a particular instance of a single generic angular uncertainty measure. The importance of these measures is then highlighted by applying the simplest two of them to derive optimal simultaneous measurements of the angular momentum and the shift operator. Finally, we argue that the model of quantum rotor extends beyond its mechanical meaning with promising applications in the fields of singular optics, superconductive circuits with a Josephson junction, or optimal pulse shaping in the time-frequency domain. Our findings lay the groundwork for quantum-information and metrological applications of the quantum rotor and point to its interdisciplinary nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
2469-9934
Svazek periodika
110
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
"033254-1"-"033254-15"
Kód UT WoS článku
001361592700012
EID výsledku v databázi Scopus
2-s2.0-85203866114