Linearity and linear extensions of fuzzy orders revisited
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73627230" target="_blank" >RIV/61989592:15310/24:73627230 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165011424000228" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011424000228</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2024.108876" target="_blank" >10.1016/j.fss.2024.108876</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linearity and linear extensions of fuzzy orders revisited
Popis výsledku v původním jazyce
The famous Szpilrajn's extension theorem demonstrating existence of linear extension of any order is one of the most important results in order theory. Inevitably its various generalizations were studied also in the setting of fuzzy logic, where up to date results are rather pessimistic. Focusing on the arguably most developed approach to fuzzy orders where order relation is defined with respect to a fuzzy equality already present within the universe, we reevaluate the strength of a link between such fuzzy order and the underlying equality. We first observe that compared to the Boolean setting, the situation is significantly more interesting in the setting of fuzzy logic as there may be many fuzzy equalities on the given set. Then we show that the link is in a sense more substantial than usually assumed and should be considered in both directions. That is defining fuzzy order with respect to fuzzy equality is not enough, the fuzzy equality should moreover mirror all the adjustments made to the fuzzy order accordingly. Utilizing this observation, we provide a generalization of Szpilrajn's extension theorem within the framework of fuzzy logic, which further alleviates the drawbacks that comparable generalizations possessed in previous studies.
Název v anglickém jazyce
Linearity and linear extensions of fuzzy orders revisited
Popis výsledku anglicky
The famous Szpilrajn's extension theorem demonstrating existence of linear extension of any order is one of the most important results in order theory. Inevitably its various generalizations were studied also in the setting of fuzzy logic, where up to date results are rather pessimistic. Focusing on the arguably most developed approach to fuzzy orders where order relation is defined with respect to a fuzzy equality already present within the universe, we reevaluate the strength of a link between such fuzzy order and the underlying equality. We first observe that compared to the Boolean setting, the situation is significantly more interesting in the setting of fuzzy logic as there may be many fuzzy equalities on the given set. Then we show that the link is in a sense more substantial than usually assumed and should be considered in both directions. That is defining fuzzy order with respect to fuzzy equality is not enough, the fuzzy equality should moreover mirror all the adjustments made to the fuzzy order accordingly. Utilizing this observation, we provide a generalization of Szpilrajn's extension theorem within the framework of fuzzy logic, which further alleviates the drawbacks that comparable generalizations possessed in previous studies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
1872-6801
Svazek periodika
480
Číslo periodika v rámci svazku
MAR
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
"108876-1"-"108876-17"
Kód UT WoS článku
001174176800001
EID výsledku v databázi Scopus
2-s2.0-85183576136