Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Linearity and linear extensions of fuzzy orders revisited

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73627230" target="_blank" >RIV/61989592:15310/24:73627230 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0165011424000228" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011424000228</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fss.2024.108876" target="_blank" >10.1016/j.fss.2024.108876</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Linearity and linear extensions of fuzzy orders revisited

  • Popis výsledku v původním jazyce

    The famous Szpilrajn&apos;s extension theorem demonstrating existence of linear extension of any order is one of the most important results in order theory. Inevitably its various generalizations were studied also in the setting of fuzzy logic, where up to date results are rather pessimistic. Focusing on the arguably most developed approach to fuzzy orders where order relation is defined with respect to a fuzzy equality already present within the universe, we reevaluate the strength of a link between such fuzzy order and the underlying equality. We first observe that compared to the Boolean setting, the situation is significantly more interesting in the setting of fuzzy logic as there may be many fuzzy equalities on the given set. Then we show that the link is in a sense more substantial than usually assumed and should be considered in both directions. That is defining fuzzy order with respect to fuzzy equality is not enough, the fuzzy equality should moreover mirror all the adjustments made to the fuzzy order accordingly. Utilizing this observation, we provide a generalization of Szpilrajn&apos;s extension theorem within the framework of fuzzy logic, which further alleviates the drawbacks that comparable generalizations possessed in previous studies.

  • Název v anglickém jazyce

    Linearity and linear extensions of fuzzy orders revisited

  • Popis výsledku anglicky

    The famous Szpilrajn&apos;s extension theorem demonstrating existence of linear extension of any order is one of the most important results in order theory. Inevitably its various generalizations were studied also in the setting of fuzzy logic, where up to date results are rather pessimistic. Focusing on the arguably most developed approach to fuzzy orders where order relation is defined with respect to a fuzzy equality already present within the universe, we reevaluate the strength of a link between such fuzzy order and the underlying equality. We first observe that compared to the Boolean setting, the situation is significantly more interesting in the setting of fuzzy logic as there may be many fuzzy equalities on the given set. Then we show that the link is in a sense more substantial than usually assumed and should be considered in both directions. That is defining fuzzy order with respect to fuzzy equality is not enough, the fuzzy equality should moreover mirror all the adjustments made to the fuzzy order accordingly. Utilizing this observation, we provide a generalization of Szpilrajn&apos;s extension theorem within the framework of fuzzy logic, which further alleviates the drawbacks that comparable generalizations possessed in previous studies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    FUZZY SETS AND SYSTEMS

  • ISSN

    0165-0114

  • e-ISSN

    1872-6801

  • Svazek periodika

    480

  • Číslo periodika v rámci svazku

    MAR

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

    "108876-1"-"108876-17"

  • Kód UT WoS článku

    001174176800001

  • EID výsledku v databázi Scopus

    2-s2.0-85183576136