Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Discernment of textile fibers by polarization-sensitive Digital Holographic microscope and machine learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73627318" target="_blank" >RIV/61989592:15310/24:73627318 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0143816624003737" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0143816624003737</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.optlaseng.2024.108395" target="_blank" >10.1016/j.optlaseng.2024.108395</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Discernment of textile fibers by polarization-sensitive Digital Holographic microscope and machine learning

  • Popis výsledku v původním jazyce

    Garment quality and preciousness depend on the type of textile fiber used in the manufacturing. The softer and rarer the animal fiber, the more expensive the textile garment. The cheapest clothes are made by mixing precious fibers such as cashmere with common ones such as sheep wool. To stop clothing counterfeit and quality forgery, checking the type of animal fibers used in textile industries is pivotal. More in general, law regulations require that the declared composition of a tissue meet some standards of quality that have to be assayed carefully by expert operators. Microscopy techniques such as Scanning Electron Microscopy (SEM) and Light Microscopy (LM) are commonly used to discriminate between textile animal fibers. However, analysis by SEM and LM depends on skilled experts called to judge, one-by-one, each fiber. This process is slow, cumbersome, and may be inaccurate, especially if the textile fibers share similar morphologies. Furthermore, the chemical treatments required by some textile processes can heavily modify the morphology of the fibers making more difficult to get correct results. In this work, the textile animal fibers are characterized by a polarization-sensitive, stain-free, Digital Holographic Microscopy (DHM) technique. In particular, we show how cashmere and wool fibers differ according to their anisotropy properties, e.g., birefringence. The optical characterization of textile fibers through the Jones matrix formalism allowed us extracting polarization-dependent DH features capable of accurately classifying three types of animal microfibers using a machine learning approach. Such promising results smooth the path towards an automatic, rapid, and objective identification process for textile industry and standardization purposes.

  • Název v anglickém jazyce

    Discernment of textile fibers by polarization-sensitive Digital Holographic microscope and machine learning

  • Popis výsledku anglicky

    Garment quality and preciousness depend on the type of textile fiber used in the manufacturing. The softer and rarer the animal fiber, the more expensive the textile garment. The cheapest clothes are made by mixing precious fibers such as cashmere with common ones such as sheep wool. To stop clothing counterfeit and quality forgery, checking the type of animal fibers used in textile industries is pivotal. More in general, law regulations require that the declared composition of a tissue meet some standards of quality that have to be assayed carefully by expert operators. Microscopy techniques such as Scanning Electron Microscopy (SEM) and Light Microscopy (LM) are commonly used to discriminate between textile animal fibers. However, analysis by SEM and LM depends on skilled experts called to judge, one-by-one, each fiber. This process is slow, cumbersome, and may be inaccurate, especially if the textile fibers share similar morphologies. Furthermore, the chemical treatments required by some textile processes can heavily modify the morphology of the fibers making more difficult to get correct results. In this work, the textile animal fibers are characterized by a polarization-sensitive, stain-free, Digital Holographic Microscopy (DHM) technique. In particular, we show how cashmere and wool fibers differ according to their anisotropy properties, e.g., birefringence. The optical characterization of textile fibers through the Jones matrix formalism allowed us extracting polarization-dependent DH features capable of accurately classifying three types of animal microfibers using a machine learning approach. Such promising results smooth the path towards an automatic, rapid, and objective identification process for textile industry and standardization purposes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    OPTICS AND LASERS IN ENGINEERING

  • ISSN

    0143-8166

  • e-ISSN

    1873-0302

  • Svazek periodika

    181

  • Číslo periodika v rámci svazku

    OCT

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    "108395-1"-"108395-10"

  • Kód UT WoS článku

    001264417100001

  • EID výsledku v databázi Scopus

    2-s2.0-85197079318