Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Crowd Sourcing as an Improvement of N-Grams Text Document Classification Algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15410%2F20%3A73606106" target="_blank" >RIV/61989592:15410/20:73606106 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://obd.upol.cz/id_publ/333185992" target="_blank" >https://obd.upol.cz/id_publ/333185992</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SMAP49528.2020.9248454" target="_blank" >10.1109/SMAP49528.2020.9248454</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Crowd Sourcing as an Improvement of N-Grams Text Document Classification Algorithm

  • Popis výsledku v původním jazyce

    A common task in a world of natural language processing is text classification useful for e.g.spam filters, documents sorting, science articles classification or plagiarism detection. This can still be done best and most accurately by human, on the other hand, we can of ten accept certain error in the classification in exchange for its speed. Here, natural language processing mechanism transforms the text in natural language to a form understandable by a classifier such as K-Nearest Neighbour, Decision Trees, Artificial Neural Network or Support Vector Machines. We can also use thishuman element to help automated classification to improve its accuracy by means of crowdsourcing. This work deals with classification of text documents and its improvement through crowdsourcing. Itsgoal is to design and implement text documents classifier prototype based on documents similarityand to design evaluation and crowdsourcing-based classification improvement mechanism. For classification the N-grams algorithm has been chosen, which was implemented in Java. Interface for crowdsourcing was created using CMS WordPress. In addition to data collection, the purpose of interface is to evaluate classification accuracy, which leads to extension of classifier test data set, thus the classification is more successful. We have tested our approach on two data sets with promising preliminary results even across different languages. This led to a real-world implementation started at the beginning of 2019 in cooperation of two universities: VšB-TUO and OSU.

  • Název v anglickém jazyce

    Crowd Sourcing as an Improvement of N-Grams Text Document Classification Algorithm

  • Popis výsledku anglicky

    A common task in a world of natural language processing is text classification useful for e.g.spam filters, documents sorting, science articles classification or plagiarism detection. This can still be done best and most accurately by human, on the other hand, we can of ten accept certain error in the classification in exchange for its speed. Here, natural language processing mechanism transforms the text in natural language to a form understandable by a classifier such as K-Nearest Neighbour, Decision Trees, Artificial Neural Network or Support Vector Machines. We can also use thishuman element to help automated classification to improve its accuracy by means of crowdsourcing. This work deals with classification of text documents and its improvement through crowdsourcing. Itsgoal is to design and implement text documents classifier prototype based on documents similarityand to design evaluation and crowdsourcing-based classification improvement mechanism. For classification the N-grams algorithm has been chosen, which was implemented in Java. Interface for crowdsourcing was created using CMS WordPress. In addition to data collection, the purpose of interface is to evaluate classification accuracy, which leads to extension of classifier test data set, thus the classification is more successful. We have tested our approach on two data sets with promising preliminary results even across different languages. This led to a real-world implementation started at the beginning of 2019 in cooperation of two universities: VšB-TUO and OSU.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    SMAP 2020 - 15th International Workshop on Semantic and Social Media Adaptation and Personalization

  • ISBN

    978-1-72815-919-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    1-6

  • Název nakladatele

    IEEE Computer Society Press

  • Místo vydání

    New York

  • Místo konání akce

    Zakynthos

  • Datum konání akce

    29. 10. 2020

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku