Linear and non-linear analysis of lower limb joints angle variability during running at different speeds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15510%2F21%3A73608479" target="_blank" >RIV/61989592:15510/21:73608479 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.gymnica.upol.cz/artkey/gym-202101-0023_linear_and_non-linear_analysis_of_lower_limb_joints_angle_variability_during_running_at_different_speeds.php" target="_blank" >https://www.gymnica.upol.cz/artkey/gym-202101-0023_linear_and_non-linear_analysis_of_lower_limb_joints_angle_variability_during_running_at_different_speeds.php</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5507/ag.2021.023" target="_blank" >10.5507/ag.2021.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linear and non-linear analysis of lower limb joints angle variability during running at different speeds
Popis výsledku v původním jazyce
Background: Stability is one of the key demands in human locomotion including running. Various kinematical analytical approaches are adopted to investigate the running strategies; nevertheless, the impacts of running speeds on the variability of angles in individual lower limbs joints is still unclear. Objective: This study was aimed to investigate the impact of various running speeds on linear and non-linear variability of the hip, knee and ankle joints movement. Methods: Twenty-three collegiate athletes (13 females, 10 males, age 22.04 ± 3.43 years, body mass 62.14 ± 9.26 kg, height 168.29 ± 7.06 cm) ran at preferred running speed, 20% lower, and 20% higher than preferred running speed on a treadmill and their lower limbs joints kinematics were recorded using myoMOTION system at the sampling frequency of 200 Hz. The repeated measure analysis of variance test was adopted to investigate the linear (mean and standard deviation) and non-linear (Lyapunov exponent) variability of the hip, knee and ankle angle in sagittal, frontal and transverse planes throughout the running cycle. Results: No significant difference was observed between the lower limbs joint angles variability in linear analysis, while the Lyapunov exponent of the hip (p = .008, ηp2 = .338), knee (p = .002, ηp2 = .249) joints in the sagittal plane significantly increased as running speed increased. Conclusions: Findings of this study revealed that the hip and knee joints respond with more freedom of movement in the sagittal plane while walking speed increases, although nonlinear approaches were the only ones capable of detecting it. Given that speed changes might reduce body stability, it appears that these joints are attempting to maintain body stability by regulating internal body system perturbations by increasing their variability.
Název v anglickém jazyce
Linear and non-linear analysis of lower limb joints angle variability during running at different speeds
Popis výsledku anglicky
Background: Stability is one of the key demands in human locomotion including running. Various kinematical analytical approaches are adopted to investigate the running strategies; nevertheless, the impacts of running speeds on the variability of angles in individual lower limbs joints is still unclear. Objective: This study was aimed to investigate the impact of various running speeds on linear and non-linear variability of the hip, knee and ankle joints movement. Methods: Twenty-three collegiate athletes (13 females, 10 males, age 22.04 ± 3.43 years, body mass 62.14 ± 9.26 kg, height 168.29 ± 7.06 cm) ran at preferred running speed, 20% lower, and 20% higher than preferred running speed on a treadmill and their lower limbs joints kinematics were recorded using myoMOTION system at the sampling frequency of 200 Hz. The repeated measure analysis of variance test was adopted to investigate the linear (mean and standard deviation) and non-linear (Lyapunov exponent) variability of the hip, knee and ankle angle in sagittal, frontal and transverse planes throughout the running cycle. Results: No significant difference was observed between the lower limbs joint angles variability in linear analysis, while the Lyapunov exponent of the hip (p = .008, ηp2 = .338), knee (p = .002, ηp2 = .249) joints in the sagittal plane significantly increased as running speed increased. Conclusions: Findings of this study revealed that the hip and knee joints respond with more freedom of movement in the sagittal plane while walking speed increases, although nonlinear approaches were the only ones capable of detecting it. Given that speed changes might reduce body stability, it appears that these joints are attempting to maintain body stability by regulating internal body system perturbations by increasing their variability.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
30306 - Sport and fitness sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Gymnica
ISSN
2336-4912
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
1-6
Kód UT WoS článku
000723076300001
EID výsledku v databázi Scopus
2-s2.0-85123702655