Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Compositional functional regression and isotemporal substitution analysis: Methods and application in time-use epidemiology

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15510%2F23%3A73620077" target="_blank" >RIV/61989592:15510/23:73620077 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/23:73620077

  • Výsledek na webu

    <a href="https://journals.sagepub.com/doi/epub/10.1177/09622802231192949" target="_blank" >https://journals.sagepub.com/doi/epub/10.1177/09622802231192949</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/09622802231192949" target="_blank" >10.1177/09622802231192949</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Compositional functional regression and isotemporal substitution analysis: Methods and application in time-use epidemiology

  • Popis výsledku v původním jazyce

    The distribution of time that people spend in physical activity of various intensities has important health implications. Physical activity (commonly categorised by the intensity into light, moderate and vigorous physical activity), sedentary behaviour and sleep, should not be analysed separately, because they are parts of a time-use composition with a natural constraint of 24 h/day. To find out how are relative reallocations of time between physical activity of various intensities associated with health, herewith we describe compositional scalar-on-function regression and a newly developed compositional functional isotemporal substitution analysis. Physical activity intensity data can be considered as probability density functions, which better reflects the continuous character of their measurement using accelerometers. These probability density functions are characterised by specific properties, such as scale invariance and relative scale, and they are geometrically represented using Bayes spaces with the Hilbert space structure. This makes possible to process them using standard methods of functional data analysis in the ????2 space, via centred logratio (clr) transformation. The scalar-on-function regression with clr transformation of the explanatory probability density functions and compositional functional isotemporal substitution analysis were applied to a dataset from a cross-sectional study on adiposity conducted among school-aged children in the Czech Republic. Theoretical reallocations of time to physical activity of higher intensities were found to be associated with larger and more progressive expected decreases in adiposity. We obtained a detailed insight into the dose–response relationship between physical activity intensity and adiposity, which was enabled by using the compositional functional approach.

  • Název v anglickém jazyce

    Compositional functional regression and isotemporal substitution analysis: Methods and application in time-use epidemiology

  • Popis výsledku anglicky

    The distribution of time that people spend in physical activity of various intensities has important health implications. Physical activity (commonly categorised by the intensity into light, moderate and vigorous physical activity), sedentary behaviour and sleep, should not be analysed separately, because they are parts of a time-use composition with a natural constraint of 24 h/day. To find out how are relative reallocations of time between physical activity of various intensities associated with health, herewith we describe compositional scalar-on-function regression and a newly developed compositional functional isotemporal substitution analysis. Physical activity intensity data can be considered as probability density functions, which better reflects the continuous character of their measurement using accelerometers. These probability density functions are characterised by specific properties, such as scale invariance and relative scale, and they are geometrically represented using Bayes spaces with the Hilbert space structure. This makes possible to process them using standard methods of functional data analysis in the ????2 space, via centred logratio (clr) transformation. The scalar-on-function regression with clr transformation of the explanatory probability density functions and compositional functional isotemporal substitution analysis were applied to a dataset from a cross-sectional study on adiposity conducted among school-aged children in the Czech Republic. Theoretical reallocations of time to physical activity of higher intensities were found to be associated with larger and more progressive expected decreases in adiposity. We obtained a detailed insight into the dose–response relationship between physical activity intensity and adiposity, which was enabled by using the compositional functional approach.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    STATISTICAL METHODS IN MEDICAL RESEARCH

  • ISSN

    0962-2802

  • e-ISSN

    1477-0334

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    17

  • Strana od-do

    2064-2080

  • Kód UT WoS článku

    001062095800001

  • EID výsledku v databázi Scopus

    2-s2.0-85171292030