Compositional functional regression and isotemporal substitution analysis: Methods and application in time-use epidemiology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15510%2F23%3A73620077" target="_blank" >RIV/61989592:15510/23:73620077 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/23:73620077
Výsledek na webu
<a href="https://journals.sagepub.com/doi/epub/10.1177/09622802231192949" target="_blank" >https://journals.sagepub.com/doi/epub/10.1177/09622802231192949</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/09622802231192949" target="_blank" >10.1177/09622802231192949</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compositional functional regression and isotemporal substitution analysis: Methods and application in time-use epidemiology
Popis výsledku v původním jazyce
The distribution of time that people spend in physical activity of various intensities has important health implications. Physical activity (commonly categorised by the intensity into light, moderate and vigorous physical activity), sedentary behaviour and sleep, should not be analysed separately, because they are parts of a time-use composition with a natural constraint of 24 h/day. To find out how are relative reallocations of time between physical activity of various intensities associated with health, herewith we describe compositional scalar-on-function regression and a newly developed compositional functional isotemporal substitution analysis. Physical activity intensity data can be considered as probability density functions, which better reflects the continuous character of their measurement using accelerometers. These probability density functions are characterised by specific properties, such as scale invariance and relative scale, and they are geometrically represented using Bayes spaces with the Hilbert space structure. This makes possible to process them using standard methods of functional data analysis in the ????2 space, via centred logratio (clr) transformation. The scalar-on-function regression with clr transformation of the explanatory probability density functions and compositional functional isotemporal substitution analysis were applied to a dataset from a cross-sectional study on adiposity conducted among school-aged children in the Czech Republic. Theoretical reallocations of time to physical activity of higher intensities were found to be associated with larger and more progressive expected decreases in adiposity. We obtained a detailed insight into the dose–response relationship between physical activity intensity and adiposity, which was enabled by using the compositional functional approach.
Název v anglickém jazyce
Compositional functional regression and isotemporal substitution analysis: Methods and application in time-use epidemiology
Popis výsledku anglicky
The distribution of time that people spend in physical activity of various intensities has important health implications. Physical activity (commonly categorised by the intensity into light, moderate and vigorous physical activity), sedentary behaviour and sleep, should not be analysed separately, because they are parts of a time-use composition with a natural constraint of 24 h/day. To find out how are relative reallocations of time between physical activity of various intensities associated with health, herewith we describe compositional scalar-on-function regression and a newly developed compositional functional isotemporal substitution analysis. Physical activity intensity data can be considered as probability density functions, which better reflects the continuous character of their measurement using accelerometers. These probability density functions are characterised by specific properties, such as scale invariance and relative scale, and they are geometrically represented using Bayes spaces with the Hilbert space structure. This makes possible to process them using standard methods of functional data analysis in the ????2 space, via centred logratio (clr) transformation. The scalar-on-function regression with clr transformation of the explanatory probability density functions and compositional functional isotemporal substitution analysis were applied to a dataset from a cross-sectional study on adiposity conducted among school-aged children in the Czech Republic. Theoretical reallocations of time to physical activity of higher intensities were found to be associated with larger and more progressive expected decreases in adiposity. We obtained a detailed insight into the dose–response relationship between physical activity intensity and adiposity, which was enabled by using the compositional functional approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
STATISTICAL METHODS IN MEDICAL RESEARCH
ISSN
0962-2802
e-ISSN
1477-0334
Svazek periodika
32
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
2064-2080
Kód UT WoS článku
001062095800001
EID výsledku v databázi Scopus
2-s2.0-85171292030