Nanostructured NaFeS2 as a cost-effective and robust electrocatalyst for hydrogen and oxygen evolution with reduced overpotentials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15640%2F21%3A73612200" target="_blank" >RIV/61989592:15640/21:73612200 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1385894721028965?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1385894721028965?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2021.131315" target="_blank" >10.1016/j.cej.2021.131315</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanostructured NaFeS2 as a cost-effective and robust electrocatalyst for hydrogen and oxygen evolution with reduced overpotentials
Popis výsledku v původním jazyce
One of the biggest challenges currently in the field of energy generation and conservation is to develop a stable, scalable and cost-effective electrocatalyst with reduced overpotentials for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). This unprecedented effort presents a robust, non-costly ternary alkali metal-based chalcogenide (NaFeS2) as an effective and highly active electrocatalyst prepared by the hydrothermal method. The monocrystalline nature of the NaFeS2 nanostructures was shown using SAED patterns. The differences in the atomic radii of Na and Fe favors the formation of Fe-S bonds largely contributing to the enhanced electrocatalytic activity of NaFeS2. Further, a decrease in the kinetic energy of the catalytic reaction increases the electrocatalytic property of NaFeS2. We also highlighted the contribution of the high surface area, the Fermi level and the d-orbitals of Fe in enhancing the OER. NaFeS2/NF shows a current density of 200 mA cm-2 with a small potential of 1.60 V and an overpotential of 370 mV indicating that the material possesses a remarkable electrocatalytic activity outperforming other electrocatalysts in the category. Further, by displaying a potential of -220 mV, NaFeS2/NF attained a current density of -100 mA cm-2, demonstrating a significantly improved HER performance of the electrocatalyst. Also, at a potential of -220 mV, the material exhibited a high stability at a continuous electrolysis of about 30 h. The density functional theory (DFT) calculations indicated that out of the possible adsorption sites on the NaFeS2 surface, only (010) and (100) exhibit catalytically preferential adsorption energy (EH) values, which are eventually responsible for the superior electrocatalytic activity. Finally, both the experimental studies and the DFT calculations complement each other and present NaFeS2 as a potentially promising bifunctional electrocatalyst for water splitting applications, which can be scaled-up and deployed for large-scale hydrogen productions.
Název v anglickém jazyce
Nanostructured NaFeS2 as a cost-effective and robust electrocatalyst for hydrogen and oxygen evolution with reduced overpotentials
Popis výsledku anglicky
One of the biggest challenges currently in the field of energy generation and conservation is to develop a stable, scalable and cost-effective electrocatalyst with reduced overpotentials for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). This unprecedented effort presents a robust, non-costly ternary alkali metal-based chalcogenide (NaFeS2) as an effective and highly active electrocatalyst prepared by the hydrothermal method. The monocrystalline nature of the NaFeS2 nanostructures was shown using SAED patterns. The differences in the atomic radii of Na and Fe favors the formation of Fe-S bonds largely contributing to the enhanced electrocatalytic activity of NaFeS2. Further, a decrease in the kinetic energy of the catalytic reaction increases the electrocatalytic property of NaFeS2. We also highlighted the contribution of the high surface area, the Fermi level and the d-orbitals of Fe in enhancing the OER. NaFeS2/NF shows a current density of 200 mA cm-2 with a small potential of 1.60 V and an overpotential of 370 mV indicating that the material possesses a remarkable electrocatalytic activity outperforming other electrocatalysts in the category. Further, by displaying a potential of -220 mV, NaFeS2/NF attained a current density of -100 mA cm-2, demonstrating a significantly improved HER performance of the electrocatalyst. Also, at a potential of -220 mV, the material exhibited a high stability at a continuous electrolysis of about 30 h. The density functional theory (DFT) calculations indicated that out of the possible adsorption sites on the NaFeS2 surface, only (010) and (100) exhibit catalytically preferential adsorption energy (EH) values, which are eventually responsible for the superior electrocatalytic activity. Finally, both the experimental studies and the DFT calculations complement each other and present NaFeS2 as a potentially promising bifunctional electrocatalyst for water splitting applications, which can be scaled-up and deployed for large-scale hydrogen productions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CHEMICAL ENGINEERING JOURNAL
ISSN
1385-8947
e-ISSN
—
Svazek periodika
426
Číslo periodika v rámci svazku
DEC
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
"nečíslováno"
Kód UT WoS článku
000727804600002
EID výsledku v databázi Scopus
2-s2.0-85110499682