Critical factors for photoelectrochemical and photocatalytic H2 evolution from gray anatase (001) nanosheets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15640%2F22%3A73618706" target="_blank" >RIV/61989592:15640/22:73618706 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/2515-7655/ac8ed3" target="_blank" >https://iopscience.iop.org/article/10.1088/2515-7655/ac8ed3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/2515-7655/ac8ed3" target="_blank" >10.1088/2515-7655/ac8ed3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Critical factors for photoelectrochemical and photocatalytic H2 evolution from gray anatase (001) nanosheets
Popis výsledku v původním jazyce
In recent years, the defect engineering of titania via reduction treatments has shown a high potential for enabling efficient and co-catalyst-free photocatalytic H2 generation from methanol/water solutions. However, defect engineering simultaneously alters several properties of TiO2. Here, we use pristine (white) and hydrogenated (gray) anatase nanosheets with dominant (001) facets. By comparing electrical conductivity, photocurrent spectra, transient photocurrent response, and photocatalytic H2 evolution, we show that the increased conductivity or broad visible light absorption of gray titania is not responsible for its increased activity. Instead, the true bottleneck is the hole transfer rate that is significantly accelerated while using gray instead of white modification. Moreover, the hole transfer reaction causes the accumulation of the reaction products in pure water, hindering the photocatalytic H2 evolution over time. These combined factors explain the superior performance of gray titania over white titania in photoelectrochemical or photocatalytic water splitting.
Název v anglickém jazyce
Critical factors for photoelectrochemical and photocatalytic H2 evolution from gray anatase (001) nanosheets
Popis výsledku anglicky
In recent years, the defect engineering of titania via reduction treatments has shown a high potential for enabling efficient and co-catalyst-free photocatalytic H2 generation from methanol/water solutions. However, defect engineering simultaneously alters several properties of TiO2. Here, we use pristine (white) and hydrogenated (gray) anatase nanosheets with dominant (001) facets. By comparing electrical conductivity, photocurrent spectra, transient photocurrent response, and photocatalytic H2 evolution, we show that the increased conductivity or broad visible light absorption of gray titania is not responsible for its increased activity. Instead, the true bottleneck is the hole transfer rate that is significantly accelerated while using gray instead of white modification. Moreover, the hole transfer reaction causes the accumulation of the reaction products in pure water, hindering the photocatalytic H2 evolution over time. These combined factors explain the superior performance of gray titania over white titania in photoelectrochemical or photocatalytic water splitting.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000416" target="_blank" >EF15_003/0000416: Pokročilé hybridní nanostruktury pro aplikaci v obnovitelných zdrojích energie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF PHYSICS-ENERGY
ISSN
2515-7655
e-ISSN
2515-7655
Svazek periodika
4
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
"nečíslováno"
Kód UT WoS článku
000857214900001
EID výsledku v databázi Scopus
2-s2.0-85139330464