Nanoporous Titanium Oxynitride Nanotube Metamaterials with Deep Subwavelength Heat Dissipation for Perfect Solar Absorption
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15640%2F23%3A73621644" target="_blank" >RIV/61989592:15640/23:73621644 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/23:73621644 RIV/61989100:27640/23:10253039
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsphotonics.3c00731" target="_blank" >https://pubs.acs.org/doi/10.1021/acsphotonics.3c00731</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsphotonics.3c00731" target="_blank" >10.1021/acsphotonics.3c00731</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanoporous Titanium Oxynitride Nanotube Metamaterials with Deep Subwavelength Heat Dissipation for Perfect Solar Absorption
Popis výsledku v původním jazyce
We report a quasi-unitary broadband absorption over the ultraviolet-visible-near-infrared range in spaced high aspect ratio, nanoporous titanium oxynitride nanotubes, an ideal platform for several photothermal applications. We explain such an efficient light-heat conversion in terms of localized field distribution and heat dissipation within the nanopores, whose sparsity can be controlled during fabrication. The extremely large heat dissipation could not be explained in terms of effective medium theories, which are typically used to describe small geometrical features associated with relatively large optical structures. A fabrication-process-inspired numerical model was developed to describe a realistic space-dependent electric permittivity distribution within the nanotubes. The resulting abrupt optical discontinuities favor electromagnetic dissipation in the deep sub-wavelength domains generated and can explain the large broadband absorption measured in samples with different porosities. The potential application of porous titanium oxynitride nanotubes as solar absorbers was explored by photothermal experiments under moderately concentrated white light (1-12 Suns). These findings suggest potential interest in realizing solar-thermal devices based on such simple and scalable metamaterials.
Název v anglickém jazyce
Nanoporous Titanium Oxynitride Nanotube Metamaterials with Deep Subwavelength Heat Dissipation for Perfect Solar Absorption
Popis výsledku anglicky
We report a quasi-unitary broadband absorption over the ultraviolet-visible-near-infrared range in spaced high aspect ratio, nanoporous titanium oxynitride nanotubes, an ideal platform for several photothermal applications. We explain such an efficient light-heat conversion in terms of localized field distribution and heat dissipation within the nanopores, whose sparsity can be controlled during fabrication. The extremely large heat dissipation could not be explained in terms of effective medium theories, which are typically used to describe small geometrical features associated with relatively large optical structures. A fabrication-process-inspired numerical model was developed to describe a realistic space-dependent electric permittivity distribution within the nanotubes. The resulting abrupt optical discontinuities favor electromagnetic dissipation in the deep sub-wavelength domains generated and can explain the large broadband absorption measured in samples with different porosities. The potential application of porous titanium oxynitride nanotubes as solar absorbers was explored by photothermal experiments under moderately concentrated white light (1-12 Suns). These findings suggest potential interest in realizing solar-thermal devices based on such simple and scalable metamaterials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Photonics
ISSN
2330-4022
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
"3291 "- 3301
Kód UT WoS článku
001066150000001
EID výsledku v databázi Scopus
2-s2.0-85173133922