Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unravelling the electrochemistry of Ni-MOF derived nickel phosphide/carbon composite electrode and redox additive electrolyte for high performance supercapacitors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15640%2F24%3A73625331" target="_blank" >RIV/61989592:15640/24:73625331 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2468519424002714?via%3Dihub#gs3" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2468519424002714?via%3Dihub#gs3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.mtchem.2024.102165" target="_blank" >10.1016/j.mtchem.2024.102165</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unravelling the electrochemistry of Ni-MOF derived nickel phosphide/carbon composite electrode and redox additive electrolyte for high performance supercapacitors

  • Popis výsledku v původním jazyce

    The performance and operation of an energy storage device are significantly influenced by the electrolyte and electrode materials. Therefore, it is crucial to develop an electrode material with a rational design and achieve compatibility with the electrolyte. In this study, we prepare Ni-MOF derived nickel phosphides/carbon (NP@C) nanostructure as an electrode for supercapacitor application. The as synthesized material provides more redox-active sites, better spatial utilization, improved conductivity, and a high-polarized surface that will speed up ion migration at electrode/electrolyte. Also, the usage of redox additive electrolyte (0.2 M K3[Fe (CN)6] in 1 M Na2SO4) further complements the redox active sites and hence the improved charge transport. Therefore, NP@C electrode achieved a remarkable 2136.3 F/g of capacitance at 3 A/g with 90.6 % of capacitance retention after 5000 charge-discharge cycles. In addition, the surface-diffusion studies confirms that NP@C shows high diffusion contribution of 82.6 % in redox electrolyte than that of 25.1 % in 1 M Na2SO4. Furthermore, NP@C//NP@C symmetric supercapacitor device in redox additive electrolyte also delivered remarkable performance rendering high energy density of 52.5 Wh/kg at a power density of 750 W/kg. In addition, NP@C//NP@C also shows the long-term stability with attenuating only 7.2 % of initial capacitance value after 10000 charge-discharge cycles. In addition to this, the device performs extremely well when tested for self-discharge studies. Hence, this study demonstrates the perfect harmony of NP@C electrodes and redox additive electrolyte to fabricate a high-performance supercapacitor.

  • Název v anglickém jazyce

    Unravelling the electrochemistry of Ni-MOF derived nickel phosphide/carbon composite electrode and redox additive electrolyte for high performance supercapacitors

  • Popis výsledku anglicky

    The performance and operation of an energy storage device are significantly influenced by the electrolyte and electrode materials. Therefore, it is crucial to develop an electrode material with a rational design and achieve compatibility with the electrolyte. In this study, we prepare Ni-MOF derived nickel phosphides/carbon (NP@C) nanostructure as an electrode for supercapacitor application. The as synthesized material provides more redox-active sites, better spatial utilization, improved conductivity, and a high-polarized surface that will speed up ion migration at electrode/electrolyte. Also, the usage of redox additive electrolyte (0.2 M K3[Fe (CN)6] in 1 M Na2SO4) further complements the redox active sites and hence the improved charge transport. Therefore, NP@C electrode achieved a remarkable 2136.3 F/g of capacitance at 3 A/g with 90.6 % of capacitance retention after 5000 charge-discharge cycles. In addition, the surface-diffusion studies confirms that NP@C shows high diffusion contribution of 82.6 % in redox electrolyte than that of 25.1 % in 1 M Na2SO4. Furthermore, NP@C//NP@C symmetric supercapacitor device in redox additive electrolyte also delivered remarkable performance rendering high energy density of 52.5 Wh/kg at a power density of 750 W/kg. In addition, NP@C//NP@C also shows the long-term stability with attenuating only 7.2 % of initial capacitance value after 10000 charge-discharge cycles. In addition to this, the device performs extremely well when tested for self-discharge studies. Hence, this study demonstrates the perfect harmony of NP@C electrodes and redox additive electrolyte to fabricate a high-performance supercapacitor.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Materials Today Chemistry

  • ISSN

    2468-5194

  • e-ISSN

  • Svazek periodika

    39

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    001299672900001

  • EID výsledku v databázi Scopus

    2-s2.0-85196183264