The evaluation of binary classification tasks in economical prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F10%3A00168674" target="_blank" >RIV/62156489:43110/10:00168674 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The evaluation of binary classification tasks in economical prediction
Popis výsledku v původním jazyce
In the area of economical classification tasks, the accuracy maximization is often used to evaluate classifier performance. Accuracy maximization (or error rate minimization) suffers from the assumption of equal false positive and false negative error costs. Furthermore, accuracy is not able to express true classifier performance under skewed class distribution. Due to these limitations, the use of accuracy on real tasks is questionable. In a real binary classification task, the difference between the costs of false positive and false negative error is usually critical. To overcome this issue, the Receiver Operating Characteristic (ROC) method in relation to decision-analytic principles can be used. One essential advantage of this method is the possibility of classifier performance visualization by means of a ROC graph. This paper presents concrete examples of binary classification, where the inadequacy of accuracy as the evaluation metric is shown, and on the same examples the ROC met
Název v anglickém jazyce
The evaluation of binary classification tasks in economical prediction
Popis výsledku anglicky
In the area of economical classification tasks, the accuracy maximization is often used to evaluate classifier performance. Accuracy maximization (or error rate minimization) suffers from the assumption of equal false positive and false negative error costs. Furthermore, accuracy is not able to express true classifier performance under skewed class distribution. Due to these limitations, the use of accuracy on real tasks is questionable. In a real binary classification task, the difference between the costs of false positive and false negative error is usually critical. To overcome this issue, the Receiver Operating Characteristic (ROC) method in relation to decision-analytic principles can be used. One essential advantage of this method is the possibility of classifier performance visualization by means of a ROC graph. This paper presents concrete examples of binary classification, where the inadequacy of accuracy as the evaluation metric is shown, and on the same examples the ROC met
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Svazek periodika
LVIII
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—