Parallel Processing of Very Many Textual Customers' Reviews Freely Written Down in Natural Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F12%3A00191656" target="_blank" >RIV/62156489:43110/12:00191656 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parallel Processing of Very Many Textual Customers' Reviews Freely Written Down in Natural Languages
Popis výsledku v původním jazyce
Text mining of hundreds of thousand or millions of documents written in a natural language is limited by the computational complexity (time and memory) and computer performance. Many applications can use only standard personal computers. In this case, the whole data set has to be divided into smaller subsets that can be processed in parallel. This article deals with the problem how to divide the original data set, which represents a typical collection containing two millions of customers' reviews written in English. The main goal is to mine information the quality of which is comparable with information obtained from the whole set despite the fact that the mining is carried out using subsets of the original large data set. The article suggests a methodof dividing the set into subsets including a possibility of evaluating the mining results by comparing the unified outputs of individual subsets with the original set. The suggested method is illustrated with a task that searches for sig
Název v anglickém jazyce
Parallel Processing of Very Many Textual Customers' Reviews Freely Written Down in Natural Languages
Popis výsledku anglicky
Text mining of hundreds of thousand or millions of documents written in a natural language is limited by the computational complexity (time and memory) and computer performance. Many applications can use only standard personal computers. In this case, the whole data set has to be divided into smaller subsets that can be processed in parallel. This article deals with the problem how to divide the original data set, which represents a typical collection containing two millions of customers' reviews written in English. The main goal is to mine information the quality of which is comparable with information obtained from the whole set despite the fact that the mining is carried out using subsets of the original large data set. The article suggests a methodof dividing the set into subsets including a possibility of evaluating the mining results by comparing the unified outputs of individual subsets with the original set. The suggested method is illustrated with a task that searches for sig
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IMMM 2012: The Second International Conference on Advances in Information Mining and Management
ISBN
978-1-61208-227-1
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
147-153
Název nakladatele
—
Místo vydání
—
Místo konání akce
Venice, Italy
Datum konání akce
1. 1. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—