Notes on Robust Testing for Normality in Insurance Science
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F15%3A43906563" target="_blank" >RIV/62156489:43110/15:43906563 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fundacionmapfre.org/documentacion/publico/i18n/catalogo_imagenes/grupo.cmd?path=1083273" target="_blank" >https://www.fundacionmapfre.org/documentacion/publico/i18n/catalogo_imagenes/grupo.cmd?path=1083273</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Notes on Robust Testing for Normality in Insurance Science
Popis výsledku v původním jazyce
Insurance science is known as the discipline that applies mathematical and statistical methods. Within those, fitting of claims distribution is a very interesting and important issue. As it is generally known, the claim amounts to the insurance company can be usually described by several continuous non-negative random variables. Moreover, most insurance data is skewed to the right and therefore such probability distributions as exponential, log-normal, Weibull, Pareto, gamma and Burr distributions are usually used. The normal distribution is also important distribution used in insurance and risk management since it usually appears like limiting distribution in many cases. Similarly, many stochastic actuarial models, classical statistical tests and confidence intervals, widely used in insurance, require that the data has been generated by a normal distribution. Thus, the aim of this contribution is to present and discuss some interesting results of robust testing for normality with appl
Název v anglickém jazyce
Notes on Robust Testing for Normality in Insurance Science
Popis výsledku anglicky
Insurance science is known as the discipline that applies mathematical and statistical methods. Within those, fitting of claims distribution is a very interesting and important issue. As it is generally known, the claim amounts to the insurance company can be usually described by several continuous non-negative random variables. Moreover, most insurance data is skewed to the right and therefore such probability distributions as exponential, log-normal, Weibull, Pareto, gamma and Burr distributions are usually used. The normal distribution is also important distribution used in insurance and risk management since it usually appears like limiting distribution in many cases. Similarly, many stochastic actuarial models, classical statistical tests and confidence intervals, widely used in insurance, require that the data has been generated by a normal distribution. Thus, the aim of this contribution is to present and discuss some interesting results of robust testing for normality with appl
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Current Topics on Risk Analysis: ICRA6 and RISK 2015 Conference
ISBN
978-84-9844-496-4
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
749-756
Název nakladatele
Fundación Mapfre
Místo vydání
Madrid
Místo konání akce
Barcelona
Datum konání akce
26. 5. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—