Predicting Inflation by the Main Inflationary Factors: Performance of TVP-VAR and VAR-NN models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F15%3A43906588" target="_blank" >RIV/62156489:43110/15:43906588 - isvavai.cz</a>
Výsledek na webu
<a href="http://mme2015.zcu.cz/downloads/MME_2015_proceedings.pdf" target="_blank" >http://mme2015.zcu.cz/downloads/MME_2015_proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting Inflation by the Main Inflationary Factors: Performance of TVP-VAR and VAR-NN models
Popis výsledku v původním jazyce
A suitable way for forecasting inflation is to do it using main inflationary factors. Such factors can be sorted to domestic and foreign sets. One-way and two- way relations between them and inflation can be considered. Therefore, vector autoregressive model (VAR) seems to be a proper tool for modelling the reality. However, basic VAR model can suffer from insufficient forecasting performance caused by its linear nature. We employ two nonlinear vector autoregressive alternatives for predicting inflation: Time-Varying Parameter VAR model with stochastic volatility and VAR Neural Network model. In both cases we select the specification with the best combination of inflationary factors. Neural Networks are flexible tool which can be easily adjusted to anautoregressive form. Resulting VAR-NN models produce accurate inflation forecasting, but they take essential information mainly from the previous inflation observations and ignore the other series. Compared to that, TVP-VAR model is a sta
Název v anglickém jazyce
Predicting Inflation by the Main Inflationary Factors: Performance of TVP-VAR and VAR-NN models
Popis výsledku anglicky
A suitable way for forecasting inflation is to do it using main inflationary factors. Such factors can be sorted to domestic and foreign sets. One-way and two- way relations between them and inflation can be considered. Therefore, vector autoregressive model (VAR) seems to be a proper tool for modelling the reality. However, basic VAR model can suffer from insufficient forecasting performance caused by its linear nature. We employ two nonlinear vector autoregressive alternatives for predicting inflation: Time-Varying Parameter VAR model with stochastic volatility and VAR Neural Network model. In both cases we select the specification with the best combination of inflationary factors. Neural Networks are flexible tool which can be easily adjusted to anautoregressive form. Resulting VAR-NN models produce accurate inflation forecasting, but they take essential information mainly from the previous inflation observations and ignore the other series. Compared to that, TVP-VAR model is a sta
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics 2015: Conference Proceedings
ISBN
978-80-261-0539-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
133-138
Název nakladatele
Západočeská univerzita
Místo vydání
Plzeň
Místo konání akce
Cheb
Datum konání akce
9. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—