Sustainability Performance Indicators Construction with Using Neural Networks in Maple
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F15%3A43907324" target="_blank" >RIV/62156489:43110/15:43907324 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26510/15:PU117620
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sustainability Performance Indicators Construction with Using Neural Networks in Maple
Popis výsledku v původním jazyce
The construction of sustainability performance indicators with using neural networks is an appropriate path to measuring and optimizing sustainable corporate performance. It is described in the paper as a modern method of implementation of artificial intelligence methods. The potential of neural networks is presented in the field of the adaptation of the various company characteristics. There are discussed two nontrivially calculated indicators: the Economic Value Added (EVA) and the Cash Flow Return on Investment (CFROI). It is known that is sufficient to have the basis of knowledge of several samples, without the knowledge of the internal links, for neural network modelling. The user friendly mathematical software Maple is introduced for the solution of those tasks. Maple has become the strong computational tool of mathematical, financial and economic modelling in education, research and practice. It allows implementing the appropriate neural network, which would be used by company managers while maintaining the complexity of values and meaningful indicators of economic performance to remove their discovered disadvantage
Název v anglickém jazyce
Sustainability Performance Indicators Construction with Using Neural Networks in Maple
Popis výsledku anglicky
The construction of sustainability performance indicators with using neural networks is an appropriate path to measuring and optimizing sustainable corporate performance. It is described in the paper as a modern method of implementation of artificial intelligence methods. The potential of neural networks is presented in the field of the adaptation of the various company characteristics. There are discussed two nontrivially calculated indicators: the Economic Value Added (EVA) and the Cash Flow Return on Investment (CFROI). It is known that is sufficient to have the basis of knowledge of several samples, without the knowledge of the internal links, for neural network modelling. The user friendly mathematical software Maple is introduced for the solution of those tasks. Maple has become the strong computational tool of mathematical, financial and economic modelling in education, research and practice. It allows implementing the appropriate neural network, which would be used by company managers while maintaining the complexity of values and meaningful indicators of economic performance to remove their discovered disadvantage
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-23079S" target="_blank" >GA14-23079S: Měření podnikové udržitelosti ve vybraných odvětvích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Innovation Management and Sustainable Economic Competitive Advantage: From Regional Development to Global Growth
ISBN
978-0-9860419-5-2
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
2035-2045
Název nakladatele
International Business Information Management Association (IBIMA)
Místo vydání
Norristown
Místo konání akce
Madrid
Datum konání akce
11. 11. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000366872700203